

cluster-k8s Repository

This project builds a generic Kubernetes cluster based on dynamic inventory generated by https://gitlab.com/ska-telescope/sdi/heat-cluster, which in turn relies on ansible collections from https://gitlab.com/ska-telescope/sdi/systems-common-roles.

Contents:

	README
	Summary

	Extending the Kubernetes Cluster

	BDD Testing of cluster-k8s
	Testing-harness

README

Deploy a Kubernetes cluster with Ansible.

Summary

This repo builds a generic Kubernetes cluster based on dynamic inventory
generated by https://gitlab.com/ska-telescope/sdi/heat-cluster, which in turn
relies on ansible collections from https://gitlab.com/ska-telescope/sdi/systems-common-roles .

Checkout cluster-k8s (this repo) and pull the dependent collections with:

git clone git@gitlab.com:ska-telescope/sdi/cluster-k8s.git
cd cluster-k8s
make install

This then needs an ansible vars file that describes the cluster to be built,
and to know where to write out the dynamic inventory describing the nodes in
the cluster.

Ansible vars for the cluster

In order to define the architecture of the cluster, one needs to describe, at
a minimum, the loadbalancer, master and worker nodes of which the cluster
will be comprised of.

In dev_cluster_vars.yml [https://gitlab.com/ska-telescope/sdi/cluster-k8s/-/blob/master/dev_cluster_vars.yml], it is described a cluster
containing 1 loadbalancer (there is always just 1), 1 master and 1
worker. Masters can be scaled out in odd numbers. Workers can be any number.
It is suggested to use this file as a starting point for defining and creating
a new cluster.

Certificate Management

Although there is a predefined certificate defined in
dev_cluster_vars.yml [https://gitlab.com/ska-telescope/sdi/cluster-k8s/-/blob/master/dev_cluster_vars.yml], it is suggested that you generate
your own k8s_certificate_key, with kubeadm alpha certs certificate-key.

For more information on the subject read Certificate Management with kubeadm [https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-certs/].

Ansible inventory file

Creating a new cluster by using this playbook, will add the necessary entries,
generated by heat-cluster, specifying the new machines in
inventory_dev_cluster [https://gitlab.com/ska-telescope/sdi/cluster-k8s/-/blob/master/inventory_dev_cluster].

These entries can then be used to add the necessary ssh keys for access to the
newly created cluster with the use of
distribute-ssh-keys [https://gitlab.com/ska-telescope/sdi/distribute-ssh-keys]
(more on that later).

Setting your OpenStack environment

First you will need to install openstacksdk [https://docs.openstack.org/openstacksdk/latest/install/index.html]
in order to be able to create the VMs using openstack (using heat-cluster).

sudo apt install python-openstackclient

Then, download your OpenStack RC File v3 from the
OpenStack Dashboard [http://192.168.93.215/dashboard] into your cluster-k8s
working directory: [image: OpenStack RC File]

Change the name of the *-openrc.sh file for easier usage:

mv *-openrc.sh to openrc.sh

Then source openrc.sh and test connectivity (it will ask you for a password,
use your OpenStack access password):

source ./openrc.sh
openstack server list

The openstack environment variables (set by the openrc.sh file) default
values are:

OS_AUTH_URL: "http://192.168.93.215:5000/v3/"
OS_PROJECT_ID: "988f3e60e7834335b3187512411d9072"
OS_PROJECT_NAME: "system-team"
OS_USER_DOMAIN_NAME: "Default"
OS_PROJECT_DOMAIN_ID: "default"
OS_REGION_NAME: "RegionOne"
OS_INTERFACE: "public"
OS_IDENTITY_API_VERSION: 3

The variables with no defaults are:

	OS_USERNAME: the openstack username of the user who will access the openstack api

	OS_PASSWORD: the openstack password of the user who will access the openstack api

Also, you need to make sure that the OpenStack account used has the
stack_owner, as well as the member (sometimes _member) roles.

Referencing custom configuration

In order not to have to specify the CLUSTER_KEYPAIR, PRIVATE_VARS and
INVENTORY_FILE variables every time a make command is issued, create the
PrivateRules.mak file in the cluster-k8s root directory specifying these
three variables (these need to be changed accordingly to each specific
purpose):

CLUSTER_KEYPAIR=your-openstack-key-name
PRIVATE_VARS=./dev_cluster_vars.yml
INVENTORY_FILE=./inventory_dev_cluster

Note: your-openstack-key-name should be the one defined under OpenStack
Key Pairs [http://192.168.93.215/dashboard/project/key_pairs/].

Running the build

The build process is broken into two phases:

	create the cluster of VMs, and do the common install steps

	build the HAProxy loadbalancer and the Kubernetes Cluster

This can be run simply with:

make build

Or, in case you didn’t define the PrivateRules.mak with:

make build CLUSTER_KEYPAIR=your-openstack-key-name PRIVATE_VARS=./dev_cluster_vars.yml INVENTORY_FILE=./inventory_dev_cluster

You can also break the make build command into the three steps comprising it:

create the VMs and do the common install
make build_nodes
build the loadbalancer
make build_haproxy
build the Kubernetes cluster
make build_k8s

Customising Namespaces, Limit Range and Resource Quotas

The created cluster will have the default Limit Range and Resource Quotas defined in the
systems-common-roles/systems_k8s [https://gitlab.com/ska-telescope/sdi/systems-common-roles/-/blob/master/systems_k8s/roles/resources/defaults/main.yml] role.

In order to override default values, fill in the variables specified by the PRIVATE_VARS variable (default: dev_cluster_vars.yml [https://gitlab.com/ska-telescope/sdi/cluster-k8s/-/blob/master/dev_cluster_vars.yml]) file or run make apply_resource_quotas anytime providing the cluster is created.

You can also use this target with only extractvalues tag (i.e. make apply_resource_quotas TAGS=extractvalues) so that only the csv and json files are created without creating namespaces and applying quotas.

Note: These variables are commented out as not to conflict with default variables.

Variables:

	chart_url and chart_dir: Used as described above to define the Helm Chart

	charts_namespaces: Namespaces to be created

	charts_quotas_*: Default total values of resources to be applied to the namespaces. These values are overridden if a chart is defined with above variables.

	memory_format: Memory size format. Set this true if you want csv file memory format to be human readable. It is false by default to enable easy calculations on values

How to use
If chart_url variable is defined, then the values are extracted from the helm chart from the url.
chart_url can be either a git repository or a packaged helm chart.

If the Helm chart is a git repository then chart_dir (top-level folder of the chart) should be defined to define where to search for the helm chart.

Then, the helm chart is templated using --dependency-update flag set to cover dependencies as well.

Total values are extracted and a csv file(named resources.csv) for all the apps are created in the directory of the playbook with a json file(named resources.json) defining total values unless current_dir is defined.

Deploy the SSH access keys on the newly created cluster

After creating the cluster, only the user issuing the build commands specified
above, will have access to the cluster.

In order to have a group of users (usually your team) being able to login into
the various VMs that were created, it is needed to distribute their respective
ssh keys into those VMs.

To do this, one needs to use the functionality provided by the
distribute-ssh-keys SKA repository.

It is beyond the scope of this README to explain all the functionality of the
distribute-ssh-keys repo, but for this specific purpose one needs to
accomplish the following steps:

1: Modify the inventory-ssh-keys in the distribute-ssh-keys repo

When issuing the build command(s) specified above, the file specified by the
INVENTORY_FILE variable (inventory_dev_cluster by default) is automatically
updated with the newly created VMs:

[cluster:children]
k8s_dev_cluster_loadbalancer
k8s_dev_cluster_master
k8s_dev_cluster_worker

[k8s_dev_cluster_loadbalancer]
k8s-dev-cluster-loadbalancer-0 ansible_host=192.168.93.137 docker_vol_diskid="5fca38ce-3edc-4fe8-b" data_vol_diskid="11c94e16-8482-47bc-a" data2_vol_diskid=""

...

[k8s_dev_cluster_master]
k8s-dev-cluster-master-0 ansible_host=192.168.93.106 docker_vol_diskid="0b53dc74-5709-46c8-b" data_vol_diskid="30e1928c-3bfd-43c4-b" data2_vol_diskid=""
k8s-dev-cluster-master-1 ansible_host=192.168.93.130 docker_vol_diskid="e8c4b3c3-8166-4cc6-b" data_vol_diskid="ce5116d7-3c87-40af-9" data2_vol_diskid=""
k8s-dev-cluster-master-2 ansible_host=192.168.93.24 docker_vol_diskid="cd976a69-d37b-4492-b" data_vol_diskid="b48fa69c-37e1-4a18-9" data2_vol_diskid=""

...

[k8s_dev_cluster_worker]
k8s-dev-cluster-worker-0 ansible_host=192.168.93.125 docker_vol_diskid="e75f9f0f-ccaa-46a9-a" data_vol_diskid="d98e0d88-8b57-47c7-9" data2_vol_diskid=""
k8s-dev-cluster-worker-1 ansible_host=192.168.93.119 docker_vol_diskid="db5236ce-4769-47bb-8" data_vol_diskid="76b5aba6-af41-4416-b" data2_vol_diskid=""
k8s-dev-cluster-worker-2 ansible_host=192.168.93.85 docker_vol_diskid="92f1f155-2c6c-494d-a" data_vol_diskid="3eeef438-f6cd-44a4-a" data2_vol_diskid=""

...

Specific roles for cluster deployment assignments
[cluster_nodes:children]
k8s_dev_cluster_loadbalancer
k8s_dev_cluster_master
k8s_dev_cluster_worker

In this particular example, you need to add these newly created machines into
the inventory-ssh-keys in the distribute-ssh-keys repo by creating a new
section similar to the following:

K8s dev cluster - k8s-dev-cluster
[k8s_dev_cluster_loadbalancer]
k8s-dev-cluster-loadbalancer-0 ansible_host=192.168.93.137

[k8s_dev_cluster_master]
k8s-dev-cluster-master-0 ansible_host=192.168.93.106
k8s-dev-cluster-master-1 ansible_host=192.168.93.130
k8s-dev-cluster-master-2 ansible_host=192.168.93.24

[k8s_dev_cluster_worker]
k8s-dev-cluster-worker-0 ansible_host=192.168.93.125
k8s-dev-cluster-worker-1 ansible_host=192.168.93.119
k8s-dev-cluster-worker-2 ansible_host=192.168.93.85

[k8s_dev_cluster:children]
k8s_dev_cluster_loadbalancer
k8s_dev_cluster_master
k8s_dev_cluster_worker

[k8s_dev_cluster:vars]
ansible_python_interpreter=python3
ansible_user=ubuntu

2: Add your keys to the ssh_key_vars.yml in the distribute-ssh-keys repo

You then need to specify which keys will be distributed among the new nodes. In
order to do so, you add a new entry to the ssh_key_vars.yml file, like such:

Bruno
 - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQDI5IHBq3DUh97aWzSAlBFov5FaNtgut6oW9QvZ7NRFplhskKqze57xcWOkL0y22n1Rao3bqZBkC4cjwm5x0kqAN+nsDRK/PB5blAUB8DJEJXz19py3pVb3BML2PBHYN+p/wqCNoKu2n22grmYphVnY5rjjgW4K4Y8AkBa8vv4YzyFvXrPRp4GD3THelkM7YsgnlZsU/QHw7rxOtWRTpeM4U4ZVdLmHWG45L1x/FjFvnsLSMGipRIaY0Oy/bC+29MCGRFZYrojSmy8KOPxjEBmwyrRe8ooDRtMtkMLQDCD8baidLnIv2yM+BdZXHBXh22f4YHJMakoPwC3n57o5x/NUAjn+0DRdgmjhimQFdh6Untd1kAnfQOd6kl/IMKyiJBZd8HacVF5XdIn9kc6l98d05uqZM71noHusHlvLKv0dtbCCM7myNmIPotT4albEJGAv22+siN8awLxepOYOBFL5sOsEWl6HnISziHUDIXmoe2qX6j0hFE9YH1ZM8sBALWx2+4sRJAljArItOj7+I0KqxUnAOAn4/KmACaH7mKiBLtq0wwW8xxoibLWFCX8C3VIFS3GOWrQU/Q49XSC3RNqqc7VgW1xZjYYb3BELT5tPMJbH3hKilfrg5NqWPj/2TDFDS6Za1QhIPbyMSxvfkf8usAqLVRW7nF4Q+UcazVg2nQ== jb.morgado@gmail.com bruno

Warning: This must be done locally, only the System Team should update the
distribute-ssh-keys repo on GitLab.

3. Distribute the new keys

Now the only thing left is to distribute the keys among the nodes you added
to the inventory_ssh_keys file. In our case, since we defined the
k8s_syscore:children structure with reference to our new machines, we can
just issue:

make add NODES=k8s_syscore

You now should be able to login in any of the new nodes by doing (we will use
the loadbalancer ip address on our example 192.168.93.137):

ssh 192.168.93.137

Destroying the nodes

Caution: The following command deletes everything that was installed and
destroys the all cluster specified by the PRIVATE_VARS variable.

In case you want to delete the all stack issue the make clean command.

Help

Run make to get the help:

make targets:
Makefile:build Build nodes, haproxy and k8s
Makefile:build_charts Build charts
Makefile:build_common apply the common roles
Makefile:build_docker apply the docker roles
Makefile:build_haproxy Build haproxy
Makefile:build_k8s Build k8s
Makefile:build_nodes Build nodes based on heat-cluster
Makefile:check_nodes Check nodes based on heat-cluster
Makefile:clean_k8s clean k8s cluster
Makefile:clean_nodes destroy the nodes - CAUTION THIS DELETES EVERYTHING!!!
Makefile:help show this help.
Makefile:install Install dependent ansible collections
Makefile:lint Lint check playbook
Makefile:reinstall reinstall collections
Makefile:test Smoke test for new created cluster
Makefile:vars Variables

make vars (+defaults):
Makefile:ANSIBLE_USER centos## ansible user for the playbooks
Makefile:CLUSTER_KEYPAIR piers-engage## key pair available on openstack to be put in the created VMs
Makefile:COLLECTIONS_PATHS ./collections
Makefile:CONTAINERD true
Makefile:DEBUG false
Makefile:EXTRA_VARS ?=
Makefile:IGNORE_NVIDIA_FAIL false
Makefile:INVENTORY_FILE ./inventory_k8s##inventory file to be generated
Makefile:NVIDIA false
Makefile:PRIVATE_VARS ./centos_vars.yml##template variable for heat-cluster
Makefile:TAGS ?=

Extending the Kubernetes Cluster

From time to time we may want to add additional nodes to a Kubernetes cluster. To do this we need to follow a number of steps (using the example of the syscore cluster):

	all steps must be performed from the bifrost. Use tmux to save painful experiences.

	source your login for the OpenStack cluster

	ensure that your PrivateRules.mak file contains the entries:

Production
PRIVATE_VARS = k8s_system_core_vars.yml
INVENTORY_FILE = ./inventory_k8s_system_core
CLUSTER_KEYPAIR = <your key pair>

	update your local ansible collections with make reinstall

	login to k8s-syscore-master-0 and generate a new certificate key using kubeadm alpha certs certificate-key

	amend the cluster instance vars file k8s_system_core_vars.yml [https://gitlab.com/ska-telescope/sdi/cluster-k8s/-/blob/master/k8s_system_core_vars.yml] to include the k8s_certificate_key and to increment the number of workers genericnode_worker.num_nodes. DO NOT ALTER THE flavor, image or name IT WILL NOT WORK!!!

	make build_nodes

	Check new nodes have been added via the OpenStack API - resize if required

	make build_k8s

	Check the progress by running something like watch kubectl get nodes -o wide - see the nodes come in and switch to Ready.

	Once the nodes are up and running and integrated in the cluster, we now add logging

	Switch to a checked out version of cluster-elasticstack [https://gitlab.com/ska-telescope/sdi/cluster-elasticstack]

	Amend the inventory_logging [https://gitlab.com/ska-telescope/sdi/cluster-elasticstack/-/blob/master/inventory_logging] file to include the additional nodes declared in cluster-k8s/inventory_k8s_system_core [https://gitlab.com/ska-telescope/sdi/cluster-k8s/-/blob/master/inventory_k8s_system_core]

	copy /etc/kubernetes/admin.conf from master-0 to the same file on all the new worker nodes.

	run make logging NODES=k8s_syscore_worker to add the logging to the new workers

	Switch to a checked out version of deploy-gitlab-runners [https://gitlab.com/ska-telescope/sdi/deploy-gitlab-runners]

	Amend the inventory_runners [https://gitlab.com/ska-telescope/sdi/deploy-gitlab-runners/-/blob/master/inventory_runners] file to include the additional nodes declared in cluster-k8s/inventory_k8s_system_core [https://gitlab.com/ska-telescope/sdi/cluster-k8s/-/blob/master/inventory_k8s_system_core]

	run make docker to prepare the worker nodes for the gitlab docker instance - note: it is possible that the TASK [restart docker-for-gitlab] will fail for existing nodes as they will be in use, but the restart must work for the new nodes.

	run make label_nodes to add the ci-runner label to new worker nodes

	Ensure that the worker nodes are not tainted eg: kubectl taint node k8s-syscore-worker-NN node-role.kubernetes.io/master=true:NoSchedule-. Check with kubectl describe nodes k8s-syscore-worker-NN.

	Switch to a checked out version of deploy-prometheus [https://gitlab.com/ska-telescope/deploy-prometheus]

	run make node-exporter INVENTORY_FILE=../cluster-k8s/inventory_k8s_system_core NODES=k8s-syscore-worker-## to install the node_exporter (replace ## with the new worker number)

	distribute ssh keys for the new nodes

	Finally, don’t forget to commit all the changes to cluster-k8s, deploy-gitlab-runners and cluster-elasticstack

Todo

	Add X-ray reports

BDD Testing of cluster-k8s

The SKA follows a BDD pattern wherever it is applicable. This kubernetes cluster provisioning repository includes a few Gherkin tests that enable an interface between python code written by developers (using pytest) and natural language scenarios that can be written by Business Owners, Product Owners, Testers and the like, using pytest-bdd [https://pypi.org/project/pytest-bdd/].

Testing-harness

The following files and directories are relevant at the time of writing (this may not be kept up to date):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	 ../test-harness/
 ├── Makefile
 ├── README.md
 ├── cucumber.json
 ├── features
 │ ├── auth.feature
 │ ├── ceph.feature
 │ ├── cluster.feature
 │ ├── dns.feature
 │ ├── etcd.feature
 │ ├── networking.feature
 │ ├── resources.feature
 │ ├── sandbox.feature
 │ └── skampi.feature
 ├── resources
 ...
 │ └── skampi_values.json
 ├── setup.cfg
 ├── test-requirements.txt
 └── tests
 ├── conftest.py
 ├── test_auth.py
 ├── test_ceph.py
 ├── test_cluster.py
 ├── test_dns.py
 ├── test_etcd.py
 ├── test_networking.py
 ├── test_resources.py
 └── test_skampi.py

Refer to the line numbers. Each feature, with name <feature_name>, has a corresponding <feature_name>.feature file under the features/ directory, and a test_<feature_name>.py under the /tests/ directory.

At the bottom of the python file where the test functions are developed, we include a line that links the feature file to the test file. As an example, the skampi feature is described here:

The feature is written in Gherkin language:

<features/skampi.feature>

Feature: SKAMPI
 Install skampi and smoke test it

Scenario: Install skampi and smoke test it
 Given a Kubernetes cluster with KUBECONFIG .kube/config
 When I install the chart at stable/etcd-operator with name etcd0 with values file resources/etcd_values.json
 And I install the chart at https://gitlab.com/ska-telescope/skampi/-/raw/master/repository/skampi-0.1.0.tgz with name test2 with values file resources/skampi_values.json
 Then after 10 minutes all pods are running

We will not include the full file here, but under the /tests/ directory there is a corresponding python file named test_skampi.py. The test_ prefix ensures that pytest picks it up as part of the test suite.

The last line in this file is of importance:

scenarios('../features/skampi.feature')

This pulls the scenarios from the .feature file and links each test function to a corresponding line in the Scenario description.

Additional and helper code is added to the resources/ directory.

Index

 nav.xhtml

 Table of Contents

 		
 cluster-k8s Repository

 		
 README

 		
 Summary

 		
 Ansible vars for the cluster

 		
 Ansible inventory file

 		
 Setting your OpenStack environment

 		
 Referencing custom configuration

 		
 Running the build

 		
 Deploy the SSH access keys on the newly created cluster

 		
 Destroying the nodes

 		
 Help

 		
 Extending the Kubernetes Cluster

 		
 BDD Testing of cluster-k8s

 		
 Testing-harness

_images/openrc.png
= openstack.

) Defaut + system-team +

Proect v
ey pe—
APl Aceess
Compute + Instances
Ovenven

Instance ID =

Displaying 20 items | Next »

Images

Key Pairs, Instance Image

o Name Name

IP Address

R -

Flavor

o sgnou
T

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

_static/minus.png

_static/plus.png

_static/file.png

