
low-cbf-mcs Documentation

CSIRO

Mar 29, 2021

Contents:

1 LowCbfSubarray 3

2 LowCbfCapLogicalStation 5

3 LowCbfCapSearchBeam 7

4 LowCbfCapStationBeam 9

5 LowCbfCapTimingBeam 11

6 AlveoDevice 13
6.1 Usage . 13
6.2 Testing . 13
6.3 Continuous Integration . 14

7 LowCbfFpga 15
7.1 Simulation Mode . 15
7.2 Continuous Integration . 15

8 AlveoCL 17

9 fpga_cmdline.py 19
9.1 Command-Line Arguments . 19

10 I2cDevice 21

11 Indices and tables 23

i

ii

low-cbf-mcs Documentation

These will interact with higher levels of the SKA control system (i.e. Low.CSP) All require the SKA LMC base
classes, which will be installed into the Docker image as part of the build process.

Contents: 1

low-cbf-mcs Documentation

2 Contents:

CHAPTER 1

LowCbfSubarray

3

low-cbf-mcs Documentation

4 Chapter 1. LowCbfSubarray

CHAPTER 2

LowCbfCapLogicalStation

5

low-cbf-mcs Documentation

6 Chapter 2. LowCbfCapLogicalStation

CHAPTER 3

LowCbfCapSearchBeam

7

low-cbf-mcs Documentation

8 Chapter 3. LowCbfCapSearchBeam

CHAPTER 4

LowCbfCapStationBeam

9

low-cbf-mcs Documentation

10 Chapter 4. LowCbfCapStationBeam

CHAPTER 5

LowCbfCapTimingBeam

11

low-cbf-mcs Documentation

12 Chapter 5. LowCbfCapTimingBeam

CHAPTER 6

AlveoDevice

AlveoDevice is a Tango device server for monitoring health status of Xilinx Alveo FPGA accelerator cards.

6.1 Usage

The pciPath property must be populated for each Tango device instance.

Use the full path to the sysfs location for user monitoring of the card. This will probably end in 00.1, and will contain
further subdirectories such as xmc.u.<number> and rom.u.0.

For example, in our test server we use: /sys/devices/pci0000:ae/0000:ae:00.0/0000:af:00.1

Note there is also a ‘management’ device (ends in 00.0, contains xmc.m.<number>), it probably doesn’t matter which
you use but we have not tested this.

6.2 Testing

To test the software without using a real FPGA, you can use a copy of the sysfs files. There is one such set in test-
harness/alveo_sysfs.

If you’re running the device on a full Tango system, the pciPath parameter can be set to any filesystem location that is
convenient to work with.

If you’re only running a DeviceTestContext (or similar), you can set the path on the module itself, e.g.

from ska.low_cbf_mcs import AlveoDevice
AlveoDevice.pciPath = '/build/alveo_sysfs'

We have tested this using a Xilinx Alveo U50 Data Center Acclerator Card. We expect it to work with other cards in
the range, but modifications to the monitored parameters are likely to be required to match the sensors present on each
card.

13

https://www.xilinx.com/products/boards-and-kits/alveo/u50.html

low-cbf-mcs Documentation

6.3 Continuous Integration

The CI tests in this repo use DeviceTestContext and do not require a full Tango system. The files in test-
harness/alveo_sysfs are used, which have known values that are hard-coded into the test script.

We had problems with the tests running very slowly and often failing, so as a temporary workaround we only run one
test in the CI pipeline. There’s a block of commented-out pytest parameters that should be reinstated once this issue is
resolved. See tests/test_alveo.py.

14 Chapter 6. AlveoDevice

CHAPTER 7

LowCbfFpga

LowCbfFpga is a Tango device server for monitoring and control of registers in the Low.CBF signal processing
FPGAs. It’s a lightweight wrapper around an AlveoCL “core” object, which communicates to the Alveo FPGA
modules using PyOpenCL.

7.1 Simulation Mode

At present, the simulationMode attribute is read-only, and reflects whether the AlveoCL core failed to be instantiated.
That is, “False” implies a connection to an FPGA.

Upon failure to create its AlveoCL core, the Tango device will create a dummy core. The dummy core handles reads
& writes of attributes, obviously using the PC memory and no interface to any FPGA.

7.2 Continuous Integration

The current CI tests of this device use DeviceTestContext and do not require a full Tango system.

15

low-cbf-mcs Documentation

16 Chapter 7. LowCbfFpga

CHAPTER 8

AlveoCL

Instatiating an AlveoCL object requires arguments for firmware, logger, memory, and card number.

• Firmware is the path to an xclbin file.

• Logger should hopefully be compatible with a standard python logger - it just needs to be an object with .debug,
.info, etc methods.

• Memories have a size in bytes, and a boolean “shared” flag (False means the memory is FPGA-only, True means
shared with the PC).

Memory config must match the parameters of the firmware kernel.

Example:

from ska.low_cbf_mcs.alveo_cl import AlveoCL, MemConfig
memories = [

MemConfig(1024 * 4, True), # 1024 words for register interchange
MemConfig(1 << 30, True), # 1GiB
MemConfig(128 << 20, True), # 128MiB

]
fpga = AlveoCL(

"/app/my_kernel.xclbin", device.logger, mem_config=memories
)

Registers system.args_magic_number and system.fpga_uptime are created at object instantiation, but fpgamap is not
parsed until start is called. (At present, a hard-coded filter selects only the ‘system’ and ‘packetiser’ peripherals)

fpga.start()

Reading & writing to FPGA registers is then performed using nested array syntax. Reads return an FpgaRegister,
which contains value, time, etc.

read example
print("Packets transmitted", fpga["packetiser"]["eth100g_tx_total_packets"].value)

(continues on next page)

17

low-cbf-mcs Documentation

(continued from previous page)

write example
fpga["packetiser"]["psr_ctrl_vector"] = 3

18 Chapter 8. AlveoCL

CHAPTER 9

fpga_cmdline.py

A command-line (i.e. non-Tango) demonstration of OpenCL FPGA communications.

9.1 Command-Line Arguments

-m <size><k|M|G><s|i>

Configure memory buffers. Numeric size, followed by scale (k=1024, M=k*1024, G=M*1024), then ‘s’ for shared
between FPGA and host or ‘i’ for internal to FPGA. Multiple buffers may be specified, seperated by spaces or colons.

-f <path>

Path to the firmware (xclbin) file

-d <card number>

FPGA register addresses are hard-coded at present.

e.g.

python3 src/ska/low_cbf_mcs/fpga_cmdline.py -m "1Gs 128Ms" -f Packetiser_Dec_2020/
→˓current_u50LV.xclbin -d 8

Press H in the CLI for further help.

19

low-cbf-mcs Documentation

20 Chapter 9. fpga_cmdline.py

CHAPTER 10

I2cDevice

For interfacing with the Gemini FPGA card backplane.

Other related Tango devices are listed on SKA Confluence - Perentie Tango Device Servers

21

https://confluence.skatelescope.org/display/SE/Perentie+Tango+Device+Servers

low-cbf-mcs Documentation

22 Chapter 10. I2cDevice

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

23

	LowCbfSubarray
	LowCbfCapLogicalStation
	LowCbfCapSearchBeam
	LowCbfCapStationBeam
	LowCbfCapTimingBeam
	AlveoDevice
	Usage
	Testing
	Continuous Integration

	LowCbfFpga
	Simulation Mode
	Continuous Integration

	AlveoCL
	fpga_cmdline.py
	Command-Line Arguments

	I2cDevice
	Indices and tables

