

SDP Prototype

This repository contains a set of packages for deploying a minimal SDP
system capable of configuring and executing workflows.

	Getting Started

SDP Prototype Design

	Design Overview

	Components

	Module View

Running the SDP Prototype

	Setting up a local development environment

	Running the SDP Prototype stand-alone

	Running the SDP Prototype in the integration environment

LMC

	SDP Master Device

	SDP Subarray Device

	Building and testing

Configuration

	Configuration Database

	Configuration Schema

	Configuration API

Services

	Processing Controller

	Helm Deployer

Workflows

	Workflow Development

	Visibility Receive Workflow

	PSS Receive Workflow

	Deploying the SDP via TANGO

	Batch Imaging Workflow

	Delivery workflow

	Test Workflows

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

I want to..

Understand the design of the SDP prototype

Documentation can be found at:

	Design Overview

	Components

	Module View

Set up the SDP prototype in a local development environment

Instructions can be found at Setting up a local development environment.

Run the SDP prototype stand-alone

First you need to make sure the local development environment is set up.
The details on how to run the prototype stand-alone can be found at
Running the SDP Prototype stand-alone.

Run the SDP Prototype in the integration environment

Details can be found at Running the SDP Prototype in the integration environment.

Find out about the SDP Tango devices

Details on the interface and Python API for the SDP Master device
can be found at SDP Master Device.

Details on the interface and Python API for the SDP Subarray device can be found at
SDP Subarray Device.

Know more about the SDP configuration database

An overview on how to access SKA SDP configuration information can be found
at Configuration Database.

Details on the configuration schema can be found at Configuration Schema.

API details of the configuration database can be found here Configuration API.

Understand the design of the services

The documentation on the processing controller service can be found at Processing Controller.

The documentation on the Helm deployer service can be found at Helm Deployer.

Run workflows

Instructions on how to run the visibility receive workflow can be found at Visibility Receive Workflow.

Details on how to run the PSS receive can be found at PSS Receive Workflow.

Instructions on how to run the test workflows can be found at Test Workflows.

Develop a workflow

Instructions on how to develop and test a workflow can be found at Workflow Development.

Design Overview

Introduction

This prototype is a partial implementation of the SDP software architecture
adopted by the SKA. Its purpose is to implement and test parts of the
architecture to de-risk the construction of the SDP.

The most recent version of the complete SDP architecture can be found in
the SDP Consortium close-out documentation [http://ska-sdp.org/publications/sdp-cdr-closeout-documentation]. The
architecture is intended to be a living document that evolves alongside its
implementation, so it will eventually be available in a form that can more
readily be changed.

Components

[image: ../_images/sdp_system_cc.svg]Component and connector diagram of the prototype implementation.

Execution Control:

	The SDP Master Tango Device is intended to provide the top-level
control of SDP services. The present implementation does very little,
apart from executing internal state transitions in response to Tango
commands. As shown in the diagram, it does not yet have a connection
to the Configuration Database.

	The SDP Subarray Tango Devices control the processing associated
with SKA Subarrays. When a Processing Block is submitted to SDP
through one of the devices, it is added to the Configuration Database.
During the execution of the Processing Block, the device publishes the
status of the Processing Block through its attributes.

	The Processing Controller controls the execution of Processing
Blocks. It detects them by monitoring the Configuration Database. To
execute a Processing Block, it requests the deployment of the
corresponding Workflow by creating an entry in the Configuration
Database.

	The Configuration Database is the central store of configuration
information in the SDP. It is the means by which the components
communicate with each other.

Platform:

	The Helm Deployer is the service that the Platform uses to respond
to deployment requests in the Configuration Database. It makes
deployments by installing Helm charts (a collection of files that
describe a related set of Kubernetes resources) into a Kubernetes cluster.

	Kubernetes is the underlying mechanism for making dynamic
deployments of Workflows and Execution Engines.

Processing Block Deployment:

	A Workflow controls the execution of a Processing Block (in the
architecture it is called the Processing Block Controller). Workflows
connect to the Configuration Database to retrieve the parameters defined
in the Processing Block and to request the deployment of Execution
Engines.

	Execution Engines are the means by which Workflows process the data.
They typically enable distributed execution of processing functions,
although Workflows may use a single process as a serial Execution
Engine.

Module View

Setting up a local development environment

Kubernetes

You will need Kubernetes installed. Docker for Desktop [https://www.docker.com/products/docker-desktop] includes a workable
one-node Kubernetes installation - you just need to activate it in the
settings. Alternatively, you can install
Minikube [https://minikube.sigs.k8s.io] or
microk8s [https://microk8s.io].

Docker and Minikube

Docker runs containers in a VM on Windows and macOS, and by default Minikube
does this on all systems. The VM needs at least 3 GB of memory to run the
SDP prototype. In Docker this can be found in the settings. For Minikube you
need to specify the amount of memory on the command line when starting a new
instance:

$ minikube start --memory='4096m'

Micro8ks

Canonical supports microk8s for Ubuntu Linux distributions - and it
is also available for many other distributions (42 according to
this [https://github.com/ubuntu/microk8s#accessing-kubernetes]). It
gives a more-or-less ‘one line’ Kubernetes installation

	To install type sudo snap install microk8s --classic

	microk8s.start will start the Kubernetes system

	microk8s.enable dns is required for the SDP prototype

	microk8s.status should show that things are active

	microk8s.inspect shows the report in more detail

	microk8s will install kubectl as microk8s.kubectl. Unless you have
another Kubernetes installation in parallel you may wish to set up an
alias with sudo snap alias microk8s.kubectl kubectl

If you have problems with pods not communicating, you may need to do
sudo iptables -P FORWARD ACCEPT (microk8s.inspect should be able
to diagnose this for you).

Helm

Furthermore you will need to install the Helm utility. It is available
from most typical package managers, see Introduction to Helm [https://helm.sh/docs/intro/]. We recommend using Helm 3.

If you are using Helm 3 for the first time, you need to add the stable
chart repository:

$ helm repo add stable https://kubernetes-charts.storage.googleapis.com/

Setting up on Windows

Install and configure tools

The hypervisor Hyper-V is built-in on Windows 10 and just needs to be enabled
via settings and a reboot.

Install Minikube, kubectl, Helm 3 and put the executables in the path.

Configure Minikube to use 4GB of memory:

> minikube config set memory 4096

This creates a file .minikube/config/config.json that looks like this:

{
 "dashboard": true,
 "memory": 4096
}

Fix the line ends

A git clone will by default automatically convert all line ends to Windows format.
This causes the SDP devices pod to fail to start. The command to see the error and
the resulting message looks like this:

> kubectl logs test-sdp-prototype-sdp-devices-845969f6b8-s9nhf -c dsconfig

wait-for-it.sh: waiting 30 seconds for databaseds-tango-base-sdp-prototype:10000
wait-for-it.sh: databaseds-tango-base-sdp-prototype:10000 is available after 0 seconds
Traceback (most recent call last):
File "/usr/local/bin/json2tango", line 11, in <module>
sys.exit(main())
File "/usr/local/lib/python2.7/dist-packages/dsconfig/json2tango.py", line 88, in main
with open(json_file) as f:
IOError: [Errno 2] No such file or directory: 'data/sdp-devices.json\r'
data/sane-dsconfig.sh: line 7: syntax error near unexpected token `fi'
data/sane-dsconfig.sh: line 7: `fi'

To fix this, create a file .gitattributes in the top-level project with these contents:

*.json text eol=lf
*.sh text eol=lf
*.yml text eol=lf
*.yaml text eol=lf

Then run the commands:

> git rm --cached -r .
> git reset --hard
> git add --renormalize .

Running the SDP Prototype stand-alone

Installing the etcd operator

The SDP configuration database is implemented on top of etcd [https://etcd.io],
a strongly consistent, distributed key-value store that provides a reliable way
to store data that needs to be accessed by a distributed system or cluster of
machines.

Before deploying the SDP itself, you need to install the etcd-operator Helm
chart. This provides a convenient way to create and manage etcd clusters in
other charts.

If you have a fresh install of Helm, you need to add the stable repository:

$ helm repo add stable https://kubernetes-charts.storage.googleapis.com/

The sdp-prototype charts directory contains a file called
etcd-operator.yaml with settings for the chart. This turns off parts which
are not used (the backup and restore operators).

First go to the charts directory:

$ cd [sdp-prototype]/charts

Then install the etcd-operator chart with:

$ helm install etcd stable/etcd-operator -f etcd-operator.yaml

If you now execute:

$ kubectl get pod --watch

You should eventually see an pod called etcd-etcd-operator-etcd-operator-[...]
in ‘Running’ state (yes, Helm is exceedingly redundant with its names). If not
wait a bit, if you try to go to the next step before this has completed there is
a chance it will fail.

Deploying the SDP

At this point you should be able to deploy the SDP. Install the sdp-prototype
chart with the release name test:

$ helm install test sdp-prototype

You can again watch the deployment in progress using kubectl:

$ kubectl get pod --watch

Pods associated with Tango might go down a couple times before they
start correctly, this seems to be normal. You can check the logs of
pods (copy the full name from kubectl output) to verify that they
are doing okay:

$ kubectl logs test-sdp-prototype-lmc-[...] sdp-subarray-1
1|2020-08-06T15:17:41.369Z|INFO|MainThread|init_device|subarray.py#110|SDPSubarray|Initialising SDP Subarray: mid_sdp/elt/subarray_1
...
1|2020-08-06T15:17:41.377Z|INFO|MainThread|init_device|subarray.py#140|SDPSubarray|SDP Subarray initialised: mid_sdp/elt/subarray_1
$ kubectl logs test-sdp-prototype-processing-controller-[...]
...
1|2020-08-06T15:14:30.068Z|DEBUG|MainThread|main|processing_controller.py#192||Waiting...
$ kubectl logs test-sdp-prototype-helm-deploy-[...]
...
1|2020-08-06T15:14:31.662Z|INFO|MainThread|main|helm_deploy.py#146||Found 0 existing deployments.

If it looks like this, there is a good chance everything has been deployed
correctly.

Testing it out

Connecting to the configuration database

By default the sdp-prototype chart deploys a ‘console’ pod which enables you
to interact with the configuration database. You can start a shell in the pod
by doing:

$ kubectl exec -it deploy/test-sdp-prototype-console -- /bin/bash

This will allow you to use the sdpcfg command:

sdpcfg ls -R /
Keys with / prefix:

Which correctly shows that the configuration is currently empty.

Starting a workflow

Assuming the configuration is prepared as explained in the previous
section, we can now add a processing block to the configuration:

sdpcfg process batch:test_dask:0.2.1
OK, pb_id = pb-sdpcfg-20200425-00000

The processing block is created with the /pb prefix in the
configuration:

sdpcfg ls values -R /pb
Keys with /pb prefix:
/pb/pb-sdpcfg-20200425-00000 = {
 "dependencies": [],
 "id": "pb-sdpcfg-20200425-00000",
 "parameters": {},
 "sbi_id": null,
 "workflow": {
 "id": "test_dask",
 "type": "batch",
 "version": "0.2.0"
 }
}
/pb/pb-sdpcfg-20200425-00000/owner = {
 "command": [
 "testdask.py",
 "pb-sdpcfg-20200425-00000"
],
 "hostname": "proc-pb-sdpcfg-20200425-00000-workflow-7pfkl",
 "pid": 1
}
/pb/pb-sdpcfg-20200425-00000/state = {
 "resources_available": true,
 "status": "RUNNING"
}

The processing block is detected by the processing controller which
deploys the workflow. The workflow in turn deploys the execution engines
(in this case, Dask). The deployments are requested by creating entries
with /deploy prefix in the configuration, where they are detected by
the Helm deployer which actually makes the deployments:

sdpcfg ls values -R /deploy
Keys with /deploy prefix:
/deploy/proc-pb-sdpcfg-20200425-00000-dask = {
 "args": {
 "chart": "stable/dask",
 "values": {
 "jupyter.enabled": "false",
 "scheduler.serviceType": "ClusterIP",
 "worker.replicas": 2
 }
 },
 "id": "proc-pb-sdpcfg-20200425-00000-dask",
 "type": "helm"
}
/deploy/proc-pb-sdpcfg-20200425-00000-workflow = {
 "args": {
 "chart": "workflow",
 "values": {
 "env.SDP_CONFIG_HOST": "test-sdp-prototype-etcd-client.default.svc.cluster.local",
 "env.SDP_HELM_NAMESPACE": "sdp",
 "pb_id": "pb-sdpcfg-20200425-00000",
 "wf_image": "nexus.engageska-portugal.pt/sdp-prototype/workflow-test-dask:0.2.0"
 }
 },
 "id": "proc-pb-sdpcfg-20200425-00000-workflow",
 "type": "helm"
}

The deployments associated with the processing block have been created
in the sdp namespace, so to view the created pods we have to ask as
follows (on the host):

$ kubectl get pod -n sdp
NAME READY STATUS RESTARTS AGE
proc-pb-sdpcfg-20200425-00000-dask-scheduler-78b4974ddf-w4x8x 1/1 Running 0 4m41s
proc-pb-sdpcfg-20200425-00000-dask-worker-85584b4598-p6qpw 1/1 Running 0 4m41s
proc-pb-sdpcfg-20200425-00000-dask-worker-85584b4598-x2bh5 1/1 Running 0 4m41s
proc-pb-sdpcfg-20200425-00000-workflow-7pfkl 1/1 Running 0 4m46s

Cleaning up

Finally, let us remove the processing block from the configuration (in the SDP
console shell):

sdpcfg delete -R /pb/pb-sdpcfg-20200425-00000
/pb/pb-sdpcfg-20200425-00000
/pb/pb-sdpcfg-20200425-00000/owner
/pb/pb-sdpcfg-20200425-00000/state
OK

If you re-run the commands from the last section you will notice that
this correctly causes all changes to the cluster configuration to be
undone as well.

Accessing Tango

By default the sdp-prototype chart installs the iTango shell pod from the
tango-base chart. You can access it as follows:

$ kubectl exec -it itango-tango-base-sdp-prototype -- /venv/bin/itango3

You should be able to query the SDP Tango devices:

In [1]: lsdev
Device Alias Server Class
-- ------------------------- ------------------------- --------------------
mid_sdp/elt/master SdpMaster/1 SdpMaster
mid_sdp/elt/subarray_1 SdpSubarray/1 SdpSubarray
mid_sdp/elt/subarray_2 SdpSubarray/2 SdpSubarray
sys/access_control/1 TangoAccessControl/1 TangoAccessControl
sys/database/2 DataBaseds/2 DataBase
sys/rest/0 TangoRestServer/rest TangoRestServer
sys/tg_test/1 TangoTest/test TangoTest

This allows direct interaction with the devices, such as querying and
and changing attributes and issuing commands:

In [2]: d = DeviceProxy('mid_sdp/elt/subarray_1')

In [3]: d.state()
Out[3]: tango._tango.DevState.OFF

In [4]: d.On()

In [5]: d.state()
Out[5]: tango._tango.DevState.ON

In [6]: d.obsState
Out[6]: <obsState.EMPTY: 0>

In [7]: config_sbi = '''
 ...: {
 ...: "id": "sbi-mvp01-20200425-00000",
 ...: "max_length": 21600.0,
 ...: "scan_types": [
 ...: {
 ...: "id": "science",
 ...: "channels": [
 ...: {"count": 372, "start": 0, "stride": 2, "freq_min": 0.35e9, "freq_max": 0.358e9, "link_map": [[0,0], [200,1]]}
 ...:]
 ...: }
 ...:],
 ...: "processing_blocks": [
 ...: {
 ...: "id": "pb-mvp01-20200425-00000",
 ...: "workflow": {"type": "realtime", "id": "test_realtime", "version": "0.1.0"},
 ...: "parameters": {}
 ...: },
 ...: {
 ...: "id": "pb-mvp01-20200425-00001",
 ...: "workflow": {"type": "realtime", "id": "test_realtime", "version": "0.1.0"},
 ...: "parameters": {}
 ...: },
 ...: {
 ...: "id": "pb-mvp01-20200425-00002",
 ...: "workflow": {"type": "batch", "id": "test_batch", "version": "0.1.0"},
 ...: "parameters": {},
 ...: "dependencies": [
 ...: {"pb_id": "pb-mvp01-20200425-00000", "type": ["visibilities"]}
 ...:]
 ...: },
 ...: {
 ...: "id": "pb-mvp01-20200425-00003",
 ...: "workflow": {"type": "batch", "id": "test_batch", "version": "0.1.0"},
 ...: "parameters": {},
 ...: "dependencies": [
 ...: {"pb_id": "pb-mvp01-20200425-00002", "type": ["calibration"]}
 ...:]
 ...: }
 ...:]
 ...: }
 ...: '''

In [8]: d.AssignResources(config_sbi)

In [9]: d.obsState
Out[9]: <obsState.IDLE: 0>

In [10]: d.Configure('{"scan_type": "science"}')

In [11]: d.obsState
Out[11]: <obsState.READY: 2>

In [12]: d.Scan('{"id": 1}')

In [13]: d.obsState
Out[13]: <obsState.SCANNING: 3>

In [14]: d.EndScan()

In [15]: d.obsState
Out[15]: <obsState.READY: 2>

In [16]: d.End()

In [17]: d.obsState
Out[17]: <obsState.IDLE: 0>

In [18]: d.ReleaseResources()

In [19]: d.obsState
Out[19]: <obsState.EMPTY: 0>

In [20]: d.Off()

In [21]: d.state()
Out[21]: tango._tango.DevState.OFF

Removing the SDP

To remove the SDP deployment from the cluster, do:

$ helm uninstall test

and to remove the etcd operator, do:

$ helm uninstall etcd

Troubleshooting

etcd doesn’t start (DNS problems)

Something that often happens on home set-ups is that test-sdp-prototype-etcd
does not start, which means that quite a bit of the SDP system will not work.
Try executing kubectl logs on the pod to get a log. You might see something
like this as the last three lines:

... I | pkg/netutil: resolving sdp-prototype-etcd-9s4hbbmmvw.k8s-sdp-prototype-etcd.default.svc:2380 to 10.1.0.21:2380
... I | pkg/netutil: resolving sdp-prototype-etcd-9s4hbbmmvw.k8s-sdp-prototype-etcd.default.svc:2380 to 92.242.132.24:2380
... C | etcdmain: failed to resolve http://sdp-prototype-etcd-9s4hbbmmvw.sdp-prototype-etcd.default.svc:2380 to match --initial-cluster=sdp-prototype-etcd-9s4hbbmmvw=http://sdp-prototype-etcd-9s4hbbmmvw.sdp-prototype-etcd.default.svc:2380 ("http://10.1.0.21:2380"(resolved from "http://sdp-prototype-etcd-9s4hbbmmvw.sdp-prototype-etcd.default.svc:2380") != "http://92.242.132.24:2380"(resolved from "http://sdp-prototype-etcd-9s4hbbmmvw.sdp-prototype-etcd.default.svc:2380"))

This informs you that etcd tried to resolve its own address, and for
some reason got two different answers both times. Interestingly, the
92.242.132.24 address is not actually in-cluster, but from the Internet,
and re-appears if we attempt to ping a nonexistent DNS name:

$ ping does.not.exist
Pinging does.not.exist [92.242.132.24] with 32 bytes of data:
Reply from 92.242.132.24: bytes=32 time=25ms TTL=242

What is going on here is that that your ISP has installed a DNS server
that redirects unknown DNS names to a server showing a ‘helpful’ error
message complete with a bunch of advertisements. For some reason this
seems to cause a problem with Kubernetes’ internal DNS resolution.

How can this be prevented? Theoretically it should be enough to force
the DNS server to one that does not have this problem (like Google’s
8.8.8.8 and 8.8.4.4 DNS servers), but that is tricky to get working.
Alternatively you can simply restart the entire thing until it works.
Unfortunately this is not quite as straightforward with etcd-operator,
as it sets the restartPolicy to Never, which means that any etcd
pod only gets once chance, and then will remain Failed forever. The
quickest way seems to be to delete the EtcdCluster object, then
upgrade the chart in order to re-install it:

$ kubectl delete etcdcluster test-sdp-prototype-etcd
$ helm upgrade test sdp-prototype

This can generally be repeated until by pure chance the two DNS resolutions
return the same result and etcd starts up.

Running the SDP Prototype in the integration environment

The SDP prototype is being integrated with the prototypes of the other
telescope sub-systems as part of the so-called Minimum Viable Product
(MVP).

The integration is done in the SKA MVP Prototype Integration
(SKAMPI) repository [https://gitlab.com/ska-telescope/skampi/].

Instructions for installing and running the MVP can be found in the
SKAMPI documentation [https://developer.skatelescope.org/projects/skampi/en/latest/].

To then deploy an SDP workflow without using WebJive etc., follow the instructions in the
standalone SDP documentation [https://developer.skatelescope.org/projects/sdp-prototype/en/latest/running/running_standalone.html#connecting-to-the-configuration-database].
However, you will need to append the namespace in which the SDP is running.

$ kubectl exec -it deploy/test-sdp-prototype-console -- /bin/bash -n <namespace>

The default namespace into which skampi deploys is -n integration.

Alternatively, you may run

$ kubectl config set-context --current --namespace=integration

to allow you to run the commands without alteration.

SDP Master Device

Introduction

The SDP Master Tango device is designed to provide the overall control of the
SDP. The commands it receives cause the other SDP services to be stopped or
started, and its attributes report on the overall state of the system.

The present implementation of the SDP Master device does very little apart from
performing the state transitions in response to commands.

Interface

Attributes

Device attributes:

	Attribute

	Type

	Read/Write

	Values

	Description

	version

	String

	Read

	Semantic version

	Master device server version

	heathState

	Enum

	Read

	healthState values

	SDP health state

healthState values

	healthState

	Description

	OK (0)

	

	DEGRADED (1)

	

	FAILED (2)

	

	UNKNOWN (3)

	

Commands

The commands change the device state as described below, but at present they
have no other effect on SDP.

	Command

	Argument type

	Return type

	Action

	On

	None

	None

	Set device state to ON

	Disable

	None

	None

	Set device state to DISABLE

	Standby

	None

	None

	Set device state to STANDBY

	Off

	None

	None

	Set device state to OFF

Python API

SDP Subarray Device

Introduction

The SDP Subarray Tango device is the principal means by which processing is
initiated in SDP.

State Model

The present implementation is shown in the diagram below. Here the state is the
combination of the Tango device state and the observing state (obsState).

[image: ../_images/sdp_subarray_states.svg]

Behaviour

The interaction between TMC (Telescope Manager Control) and the SDP Subarray
device is shown below. The SDP Subarray device receives commands from the TMC
SDP Subarray leaf node, and the consequent changes to the state of SDP are
reported in the device attributes.

[image: ../_images/sdp_subarray_interaction_tango.svg]

Interface

Attributes

	Attribute

	Type

	Read/Write

	Values

	Description

	version

	String

	Read

	Semantic version

	Subarray device server version

	obsState

	Enum

	Read

	obsState values

	Subarray observing state

	adminMode

	Enum

	Read-write

	adminMode values

	Subarray admin mode

	healthState

	Enum

	Read

	healthState values

	Subarray health state

	receiveAddresses

	String

	Read

	JSON object

	Host addresses for receiving visibilities

	schedulingBlockInstance

	String

	Read

	JSON object

	State of Scheduling Block Instance

	processingBlockState

	String

	Read

	JSON object

	State of associated real-time Processing Blocks

obsState values

	obsState

	Description

	EMPTY (0)

	No receive and real-time processing resources are assigned to the subarray

	RESOURCING (1)

	Resources are being assigned or released

	IDLE (2)

	Receive and real-time processing resources are assigned to the subarray as specified in the Scheduling Block Instance

	CONFIGURING (3)

	Scan type is being configured

	READY (4)

	Scan type is configured and the subarray is ready to scan

	SCANNING (5)

	Scanning

	ABORTING (6)

	Current activity is being aborted

	ABORTED (7)

	Most recent activity has been aborted

	RESETTING (8)

	Resetting to IDLE obsState

	FAULT (9)

	A fault has occurred in observing

	RESTARTING (10)

	Restarting in EMPTY obsState

adminMode values

	adminMode

	Description

	OFFLINE (0)

	

	ONLINE (1)

	

	MAINTENANCE (2)

	

	NOT_FITTED (3)

	

	RESERVED (4)

	

healthState values

	healthState

	Description

	OK (0)

	

	DEGRADED (1)

	

	FAILED (2)

	

	UNKNOWN (3)

	

Commands

	Command

	Argument type

	Return type

	Action

	On

	None

	None

	Sets the device state to ON and obsState to EMPTY.

	Off

	None

	None

	Sets the device state to OFF.

	AssignResources

	String (JSON)

	None

	Assigns processing resources to the SBI. Sets obsState to IDLE.

	ReleaseResources

	None

	None

	Releases all real-time processing in the SBI. Sets obsState to EMPTY.

	Configure

	String (JSON)

	None

	Configures scan type for the next scans. Sets obsState to READY.

	Scan

	String (JSON)

	None

	Begins a scan of the configured type. Sets obsState to SCANNING.

	EndScan

	None

	None

	Ends the scan. Sets obsState to READY.

	End

	None

	None

	Clears the scan type. Sets obsState to IDLE.

	Abort

	None

	None

	Aborts current activity. Sets obsState to ABORTED.

	ObsReset

	None

	None

	Resets to last known stable state. Sets obsState to IDLE.

	Restart

	None

	None

	Restarts the subarray device. Sets obsState to EMPTY.

AssignResources command

The argument of the AssignResources command is a JSON object describing the processing to be done
for the scheduling block instance (SBI). It contains a set of scan types and processing blocks.
The scan types contain information about the frequency channels output by CSP, which is important
for configuring the receive processes in SDP. The processing blocks define the workflows to be run
and the parameters to be passed to the workflows.

An example of the argument is below. Note that:

	max_length specifies the maximum length of the SBI in seconds.

	In scan_types, the channel information is for example only.

	In processing_blocks, the workflow parameters will not actually be empty. Each workflow will have its
own schema for its parameters.

{
 "id": "sbi-mvp01-20200425-00000",
 "max_length": 21600.0,
 "scan_types": [
 {
 "id": "science",
 "channels": [
 {"count": 372, "start": 0, "stride": 2, "freq_min": 0.35e9, "freq_max": 0.358e9, "link_map": [[0,0], [200,1]]}
]
 },
 {
 "id": "calibration",
 "channels": [
 {"count": 372, "start": 0, "stride": 2, "freq_min": 0.35e9, "freq_max": 0.358e9, "link_map": [[0,0], [200,1]]}
]
 }
],
 "processing_blocks": [
 {
 "id": "pb-mvp01-20200425-00000",
 "workflow": {"type": "realtime", "id": "test_receive_addresses", "version": "0.3.2"},
 "parameters": {}
 },
 {
 "id": "pb-mvp01-20200425-00001",
 "workflow": {"type": "realtime", "id": "test_realtime", "version": "0.2.0"},
 "parameters": {}
 },
 {
 "id": "pb-mvp01-20200425-00002",
 "workflow": {"type": "batch", "id": "test_batch", "version": "0.2.0"},
 "parameters": {},
 "dependencies": [
 {"pb_id": "pb-mvp01-20200425-00000", "type": ["visibilities"]}
]
 },
 {
 "id": "pb-mvp01-20200425-00003",
 "workflow": {"type": "batch", "id": "test_batch", "version": "0.2.0"},
 "parameters": {},
 "dependencies": [
 {"pb_id": "pb-mvp01-20200425-00002", "type": ["calibration"]}
]
 }
]
}

Configure command

The argument of the Configure command is a JSON object specifying the scan type for the next scans.
new_scan_types is optional, it is only present if a new scan type needs to be declared. This
would only happen for special SBIs (and underlying SDP workflows) meant to support dynamic
reconfiguration.

An example of the argument:

{
 "new_scan_types": [
 {
 "id": "new_calibration",
 "channels": [
 {"count": 372, "start": 0, "stride": 2, "freq_min": 0.35e9, "freq_max": 0.358e9, "link_map": [[0,0], [200,1]]}
]
 }
],
 "scan_type": "new_calibration"
}

Scan command

The argument of the Scan command is a JSON object which specifies the scan ID.

An example of the argument:

{
 "id": 1
}

Python API

Building and testing

Placeholder for the merged documentation on building and testing the Tango
devices.

Configuration Database

This is the frontend module for accessing SKA SDP configuration
information. It provides ways for SDP controller and processing
components to discover and manipulate the intended state of the
system.

At the moment this is implemented on top of etcd, a highly-available
database. This library provides primitives for atomic queries and
updates to the stored configuration information.

Installation

Install from PyPI:

pip install ska-sdp-config

Basic Usage

Make sure you have a database backend accessible (etcd3 is supported
at the moment). Location can be configured using the SDP_CONFIG_HOST
and SDP_CONFIG_PORT environment variables. The defaults are
127.0.0.1 and 2379, which should work with a local etcd started
without any configuration.

This should give you access to SDP configuration information, for
instance try:

import ska_sdp_config

config = ska_sdp_config.Config()

for txn in config.txn():
 for pb_id in txn.list_processing_blocks():
 pb = txn.get_processing_block(pb_id)
 print("{} ({}:{})".format(pb_id, pb.workflow['id'], pb.workflow['version']))

To read a list of currently active processing blocks with their
associated workflows.

Command line

This package also comes with a command line utility for easy access to
configuration data. For instance run:

sdpcfg list values /pb/

To query all processing blocks.

Configuration Schema

This is the schema of the configuration database, effectively the control plane of the SDP.

Design Principles

	Uses a key-value store

	Uses watches on a key or range of keys to monitor for any updates

	Objects are represented as JSON

	We will likely want to define schemas and validation eventually, but
for the moment this will be by example

Scheduling Block

Path /sb/[sbi_id]

Dynamic state information of the scheduling block instance.

Contents:

{
 "id": "sbi-mvp01-20200425-00000",
 "max_length": 21600.0
 "scan_types": [
 { "id": "science", ... },
 { "id": "calibration", ... }
]
 "pb_realtime": ["pb-mvp01-20200425-00000", ...]
 "pb_batch": [...]
 "pb_receive_addresses": "pb-mvp01-20200425-00000"
 "current_scan_type": "science"
 "status": "SCANNING"
 "scan_id": 12345
}

When the scheduling block instance is being executed, the status field is
set to the observation state (obsState) of the subarray. When the scheduling
block is ended, status is set to FINISHED.

Processing Block

Path: /pb/[pb_id]

Static definition of processing block information.

Contents:

{
 "id": "pb-mvp01-20200425-00000",
 "sbi_id": "sbi-mvp01-20200425-00000",
 "workflow": {
 "type": "realtime",
 "id": "vis_receive",
 "version": "0.2.0"
 }
 "parameters": { ... }
}

There are two types of processing, real-time processing and batch (offline)
processing. Real-time processing starts immediately, as it directly
corresponds to an observation that is about to start. Batch processing will
be inserted into a scheduling queue managed by the SDP, where it will
typically be executed according to resource availability.

Valid types are realtime and batch. The workflow tag identifies the
workflow script version as well as the required underlying software (e.g.
execution engines, processing components). ... stands for arbitrary
workflow-defined parameters.

Processing Block State

Path: /pb/[pb_id]/state

Dynamic state information of the processing block. If it does not exist, the
processing block is still starting up.

Contents:

{
 "resources_available": True
 "status": "RUNNING",
 "receive_addresses": [
 { "scan_type": "science", ... },
 { "scan_type": "calibration", ... },
]
}

Tracks the current state of the processing block. This covers both the
SDP-internal state (as defined by the Execution Control Data Model) as well as
information to publish via Tango for real-time workflows, such as the status
and receive addresses (for ingest).

Processing Block Owner

Path: /pb/[pb_id]/owner

Identifies the process executing the workflow. Used for leader election/lock
as well as a debugging aid.

Contents:

{
 "command": [
 "vis_receive.py",
 "pb-mvp01-20200425-00000"
],
 "hostname": "pb-mvp01-20200425-00000-workflow-2kxfz",
 "pid": 1
}

Configuration API

High-Level API

High-level API for SKA SDP configuration.

	
class ska_sdp_config.config.Config(backend=None, global_prefix='', owner=None, **cargs)[source]

	Connection to SKA SDP configuration.

	
property backend

	Get the backend database object.

	
property client_lease

	Return the lease associated with the client.

It will be kept alive until the client gets closed.

	
close()[source]

	Close the client connection.

	
lease(ttl=10)[source]

	Generate a new lease.

Once entered can be associated with keys,
which will be kept alive until the end of the lease. At that
point a daemon thread will be started automatically to refresh
the lease periodically (default seems to be TTL/4).

	Parameters

	ttl – Time to live for lease

	Returns

	lease object

	
txn(max_retries=64)[source]

	Create a Transaction for atomic configuration query/change.

As we do not use locks, transactions might have to be repeated in
order to guarantee atomicity. Suggested usage is as follows:

for txn in config.txn():
 # Use txn to read+write configuration
 # [Possibly call txn.loop()]

As the for loop suggests, the code might get run multiple
times even if not forced by calling
Transaction.loop(). Any writes using the transaction
will be discarded if the transaction fails, but the
application must make sure that the loop body has no other
observable side effects.

	Parameters

	max_retries – Number of transaction retries before a
RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] gets raised.

	
class ska_sdp_config.config.Transaction(config, txn)[source]

	High-level configuration queries and updates to execute atomically.

	
create_deployment(dpl: ska_sdp_config.entity.deployment.Deployment)[source]

	Request a change to cluster configuration.

	Parameters

	dpl – Deployment to add to database

	
create_processing_block(pb: ska_sdp_config.entity.pb.ProcessingBlock)[source]

	Add a new ProcessingBlock to the configuration.

	Parameters

	pb – Processing block to create

	
create_processing_block_state(pb_id: str, state: dict)[source]

	Create processing block state.

	Parameters

	
	pb_id – Processing block ID

	state – Processing block state to create

	
create_scheduling_block(sb_id: str, state: dict)[source]

	Create scheduling block.

	Parameters

	
	sb_id – scheduling block ID

	state – scheduling block state

	
create_subarray(subarray_id: str, state: dict)[source]

	Create subarray.

	Parameters

	
	subarray_id – subarray ID

	state – subarray state

	
delete_deployment(dpl: ska_sdp_config.entity.deployment.Deployment)[source]

	Undo a change to cluster configuration.

	Parameters

	dpl – Deployment to remove

	
get_deployment(deploy_id: str) → ska_sdp_config.entity.deployment.Deployment[source]

	Retrieve details about a cluster configuration change.

	Parameters

	deploy_id – Name of the deployment

	Returns

	Deployment details

	
get_processing_block(pb_id: str) → ska_sdp_config.entity.pb.ProcessingBlock[source]

	Look up processing block data.

	Parameters

	pb_id – Processing block ID to look up

	Returns

	Processing block entity, or None if it doesn’t exist

	
get_processing_block_owner(pb_id: str) → dict[source]

	Look up the current processing block owner.

	Parameters

	pb_id – Processing block ID to look up

	Returns

	Processing block owner data, or None if not claimed

	
get_processing_block_state(pb_id: str) → dict[source]

	Get the current processing block state.

	Parameters

	pb_id – Processing block ID

	Returns

	Processing block state, or None if not present

	
get_scheduling_block(sb_id: str) → dict[source]

	Get scheduling block.

	Parameters

	sb_id – scheduling block ID

	Returns

	scheduling block state

	
get_subarray(subarray_id: str) → dict[source]

	Get subarray.

	Parameters

	subarray_id – subarray ID

	Returns

	subarray state

	
is_processing_block_owner(pb_id: str) → bool[source]

	Check whether this client is owner of the processing block.

	Parameters

	pb_id – Processing block ID to look up

	Returns

	Whether processing block exists and is claimed

	
list_deployments(prefix='')[source]

	List all current deployments.

	Returns

	Deployment IDs

	
list_processing_blocks(prefix='')[source]

	Query processing block IDs from the configuration.

	Parameters

	prefix – If given, only search for processing block IDs
with the given prefix

	Returns

	Processing block ids, in lexicographical order

	
list_scheduling_blocks(prefix='')[source]

	Query scheduling block IDs from the configuration.

	Parameters

	prefix – if given, only search for scheduling block IDs
with the given prefix

	Returns

	scheduling block IDs, in lexicographical order

	
list_subarrays(prefix='')[source]

	Query subarray IDs from the configuration.

	Parameters

	prefix – if given, only search for subarray IDs
with the given prefix

	Returns

	subarray IDs, in lexicographical order

	
loop(wait=False, timeout=None)[source]

	Repeat transaction regardless of whether commit succeeds.

	Parameters

	
	wait – If transaction succeeded, wait for any read
values to change before repeating it.

	timeout – Maximum time to wait, in seconds

	
new_processing_block_id(generator: str)[source]

	Generate a new processing block ID that is not yet in use.

	Parameters

	generator – Name of the generator

	Returns

	Processing block ID

	
property raw

	Return transaction object for accessing database directly.

	
take_processing_block(pb_id: str, lease)[source]

	Take ownership of the processing block.

	Parameters

	pb_id – Processing block ID to take ownership of

	Raises

	backend.ConfigCollision

	
update_processing_block(pb: ska_sdp_config.entity.pb.ProcessingBlock)[source]

	Update a ProcessingBlock in the configuration.

	Parameters

	pb – Processing block to update

	
update_processing_block_state(pb_id: str, state: dict)[source]

	Update processing block state.

	Parameters

	
	pb_id – Processing block ID

	state – Processing block state to update

	
update_scheduling_block(sb_id: str, state: dict)[source]

	Update scheduling block.

	Parameters

	
	sb_id – scheduling block ID

	state – scheduling block state

	
update_subarray(subarray_id: str, state: dict)[source]

	Update subarray.

	Parameters

	
	subarray_id – subarray ID

	state – subarray state

	
class ska_sdp_config.config.TransactionFactory(config, txn)[source]

	Helper object for making transactions.

	
ska_sdp_config.config.dict_to_json(obj)[source]

	Format a dictionary for writing it into the database.

	Parameters

	obj – Dictionary object to format

	Returns

	String representation

Entities

Processing block configuration entities.

	
class ska_sdp_config.entity.pb.ProcessingBlock(id, sbi_id, workflow, parameters={}, dependencies=[], **kwargs)[source]

	Processing block entity.

Collects configuration information relating to a processing job
for the SDP. This might be either real-time (supporting a running
observation) or batch (to process data after the fact).

Actual execution of processing steps will be performed by a
(parameterised) workflow interpreting processing block information.

	
property dependencies

	Return dependencies on other processing blocks.

	
property id

	Return the processing block ID.

	
property parameters

	Return workflow-specific parameters.

	
property sbi_id

	Return scheduling block instance ID, if associated with one.

	
to_dict()[source]

	Return data as dictionary.

	
property workflow

	Return information identifying the workflow.

Backend

Backends for SKA SDP configuration DB.

Processing Controller

Introduction

The processing controller (PC) is the SDP service responsible for the
controlling the execution of processing blocks (PBs).

Each scheduling block instance (SBI) that SDP is configured to execute
contains a number of PBs, either real-time or batch. The real-time PBs run
simultaneously for the duration of the SBI. Batch PBs run after the SBI is
finished, and they may have dependencies on other PBs, both real-time and
batch.

The SDP architecture requires the PC to use a model of the available resources
to determine if a PB can be executed. This has not been implemented yet, so
real-time PBs are always executed immediately, and batch processing ones when
their dependencies are finished.

Processing block and its state

A PB and its state are located at the following paths in the configuration
database:

/pb/[pb_id]
/pb/[pb_id]/state

The PB is created by the subarray Tango device when starting a SBI. Once it
is created it does not change. The state is created by the PC when deploying
the workflow, and it is subsequently updated by the PC and the workflow.

The entries in the PB state relevant to the PC are status and
resources_available, for example:

{
 "status": "WAITING",
 "resources_available": false
}

status is a string indicating the status of the workflow. Possible values
are:

	STARTING: set by the PC when it deploys the workflow, hereafter the
workflow is responsible for setting status

	WAITING: workflow has started, but is waiting for resources to be
available to execute its processing

	RUNNING: workflow is executing its processing

	FINISHED: workflow has finished its processing

	FAILED: set by the PC if it fails to deploy the workflow, or by the
workflow in the case of a non-recoverable error

resources_available is a boolean set by the PC to inform the workflow
whether it has the resources available to start its processing. Although the
resource model is not implemented yet, this is used to control when batch PBs
with dependencies start.

Behaviour

The behaviour of the PC is summarised as follows:

	The PC uses HTTPS to retrieve the workflow definition file. This is a JSON
file that specifies the mapping between the workflow ID and version, and a
Docker container image. The workflow definition file is updated at regular
intervals (the default is every 5 minutes).

	If a PB is new, the PC will create the workflow deployment for it. A PB is
deemed to be new if the PB state does not exist. The PC creates the state
and sets status to STARTING and resources_available to false. If
the workflow ID and version is not found in the definition file, the PC
still creates the state, but sets status to FAILED.

	If a PB’s dependencies are all FINISHED, the PC sets
resources_available to true to allow it to start executing. Real-time
PBs do not have dependencies, so they start executing immediately.

	The PC removes processing deployments (workflows and execution engines) not
associated with any existing PB. This is used to clean up if a PB is
deleted from the configuration DB. At present there is no mechanism for
doing this (other than manually), but it might be used in future to abort
a workflow execution.

Helm Deployer

Workflow Development

The steps to develop and test an SDP workflow are as follows:

	Clone the sdp-prototype repository from GitLab and create a new branch for
your work.

	Create a directory for your workflow in src/workflows:

$ mkdir src/workflows/<my-workflow>
$ cd src/workflows/<my-workflow>

	Write the workflow script (<my-workflow>.py). See the existing workflows
for examples of how to do this.

	Create a Dockerfile for building the workflow image, e.g.

FROM python:3.7

RUN pip install ska_sdp_config

WORKDIR /app
COPY <my-workflow>.py .
ENTRYPOINT ["python", "<my-workflow>.py"]

	Create a file called version.txt containing the semantic version number of
the workflow.

	Create a Makefile containing

NAME := workflow-<my-workflow>
VERSION := $(shell cat version.txt)

include ../../make/Makefile

	Build the workflow image:

$ make build

	Push the image to the Nexus repository:

$ make push

	Add the workflow to the workflow definition file
src/workflows/workflows.json.

	Commit the changes to your branch and push to GitLab.

	You can then test the workflow by starting SDP with the processing
controller workflows URL pointing to your branch in GitLab:

$ helm install sdp-prototype -n sdp-prototype \
 --set processing_controller.workflows.url=https://gitlab.com/ska-telescope/sdp-prototype/raw/<my-branch>/src/workflows/workflows.json

	Then create a processing block to run the workflow, either via the Tango
interface, or by creating it directly in the config DB with sdpcfg.

Additional steps to build a custom execution engine

If you want to use a custom execution engine (EE) in your workflow, the
additional steps you need to do are:

	Create a directory in src for your EE.

	Add the EE code.

	Build the EE Docker image(s) and push it/them to the Nexus repository.

	Add a Helm chart to deploy the EE containers in src/helm_deploy/charts.

	Add the custom EE deployment to the workflow script.

	Commit changes to your branch and push to GitLab.

	When testing, you also need to point the Helm deployer to your branch of the
repository:

$ helm install sdp-prototype -n sdp-prototype \
 --set processing_controller.workflows.url=https://gitlab.com/ska-telescope/sdp-prototype/raw/<my-branch>/src/workflows/workflows.json \
 --set helm_deploy.chart_repo.ref=<my-branch>

Visibility Receive Workflow

This is a simple C code for a visibility receiver capable of receiving UDP-based
SPEAD (Streaming Protocol for Exchanging Astronomical Data) streams containing
the item identifiers specified in the of the SDP-CSP ICD.

This code was originally written for the SKA Science Data Processor Integration
Prototype [https://github.com/SKA-ScienceDataProcessor/integration-prototype]
and copied to this repository.

More information about SPEAD can be found here
https://casper.ssl.berkeley.edu/astrobaki/images/9/93/SPEADsignedRelease.pdf

Dependencies

	CASACORE >= 2.0.0 : https://github.com/casacore/casacore

	OSKAR measurement set library : https://github.com/OxfordSKA/OSKAR

	The OSKAR ms library can be installed as a standalone library
from the oskar/ms folder of the repo. eg.:
.. code-block:: guess

git clone https://github.com/OxfordSKA/OSKAR.git
mkdir OSKAR/oskar/ms/release
cd OSAKR/oskar/ms/release
cmake ..
make
make install

Build Instructions

To build the code on a local machine, ensure make and CMake are both installed
and give the following commands from the current directory:

mkdir build
cd build
cmake ..
make

To run the unit tests from the build directory, either run

ctest

or run the unit test binary directly using:

./test/recv_test

Test Instructions

Starting the receiver

Run natively with:

./recv -d .

or with Docker:

docker run -t --rm \
 -p 41000:41000/udp \
 -v $(pwd)/output:/app/output \
 --env USER=orca \
 nexus.engageska-portugal.pt/sdp-prototype/vis-receive:latest

Staring the sender

python3 send.py

PSS Receive Workflow

This is a simple python code for a PSS (Pulsar Search Sub-element) receiver
capable of receiving UDP-based SPEAD streams.

Dependencies

	Numpy>=1.16.2 : https://numpy.org/

	SPEAD2==2.0.2 : https://spead2.readthedocs.io/en/latest/

Description

There are two simple python programmes (receive and send). The sender is a dummy sender that is capable of loading
a single-pulse search candidate file and sending the contents of that file, with some dummy metadata over UDP.
The receiver listens for these UDP streams and terminates once they are received.

Running send and receive standalone

To demonstrate their functionality it is possible to run the send and receive codes natively.

Start the receiver

cd [sdp-prototype]/src/pss_receive/pss-receive
python receive.py

The console will show that the receiver is listening on port 9012

$ python receive.py
Listening on port 9021..

Start the sender

We are sending the contents of a single pulse search candidate file test.spccl. In a separate terminal…

cd [sdp-prototype]/src/pss_receive/pss-send
python send.py -f test.spccl

The console will show some details of the data that we’ve send.

$ python send.py -f test.spccl
INFO 2020-02-03 13:32:36,595 Start of stream
INFO 2020-02-03 13:32:36,595 Sending stream with id=EEK8V39g0JEP5Dmh, name=test.spccl
INFO 2020-02-03 13:32:36,595 Sending stream with id=EEK8V39g0JEP5Dmh, nbytes=5421
INFO 2020-02-03 13:32:36,595 Sending stream with id=EEK8V39g0JEP5Dmh, nlines=34
INFO 2020-02-03 13:32:36,595 End of stream
File test.spccl sent

Returning to the terminal in which we started the receiver we should see the data sent by send.py. The data has been
saved to a file in the subdirectory ‘output’.

Deploying receive as an sdp component

These instructions assume you have created the etcd cluster and deployed the sdp components. In other words, in the instructions
for ‘’Running the SDP Prototype stand-alone’‘, you have done everything up to, but not including, the ‘’start a worflow’’ section.

Now we add a pss_receive processing block to the configuration database. We first connect to a console pod which allows us to interact with the configuration database.

$ kubectl exec -it deploy/sdp-prototype-console -- /bin/bash
$ sdpcfg process realtime:pss_receive:0.1.0
OK, pb_id = realtime-20200203-0000

We can watch the tasks that are being deployed in the sdp namespace by running..

$ kubectl get all -n sdp
NAME READY STATUS RESTARTS AGE
pod/pss-receive-6p2dx 0/1 ContainerCreating 0 45s
pod/realtime-20200203-0000-workflow-78fb74d48d-f6pgm 1/1 Running 0 56s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/pss-receive ClusterIP 10.96.224.5 <none> 9021/UDP 45s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/realtime-20200203-0000-workflow 1/1 1 1 56s

NAME DESIRED CURRENT READY AGE
replicaset.apps/realtime-20200203-0000-workflow-78fb74d48d 1 1 1 57s

NAME COMPLETIONS DURATION AGE
job.batch/pss-receive 0/1 46s 46s

…in which we see the workflow pod, created by the processing controller and the receive pod. Looking at the logs of the

processing controller we can see that processing block realtime-20200203-0000 has been deployed and is in a ‘waiting’ state
as we haven’t sent it any data yet.

$ kubectl logs sdp-prototype-processing-controller-[...]
processing_controller.py#105||('pss_receive', '0.1.0'): nexus.engageska-portugal.pt/sdp-prototype/workflow-pss-receive:0.1.0
processing_controller.py#106||Batch workflows:
processing_controller.py#158||Current PBs: ['realtime-20200203-0000']
processing_controller.py#159||Current deployments: ['realtime-20200203-0000-pss-receive', 'realtime-20200203-0000-workflow']
processing_controller.py#160||Current PBs with deployment: ['realtime-20200203-0000']
processing_controller.py#207||Waiting...

Looking at the output of the workflow pod in the sdp namespace we can see that the processing controller has claimed the processing
block and deployed the pss-receive container.

$ kubectl logs realtime-20200203-0000-workflow-[...] -n sdp
INFO:pss_recv:Claimed processing block ProcessingBlock(pb_id='realtime-20200203-0000',
 sbi_id=None, workflow={'id': 'pss_receive', 'type': 'realtime', 'version': '0.1.0'},
 parameters={}, scan_parameters={})
INFO:pss_recv:Deploying PSS Receive...
INFO:pss_recv:Done, now idling...

Finally, we can see the output of the receive pod, which shows the same console output as would be seen
were we to be running the receive code standalone.

$ kubectl logs pss-receive-[...] -n sdp
Listening on port 9021..

Sending some data

$ cd [sdp-prototype]/src/pss_receive/pss-send

In this directory there is a K8s deployment manifest that will start a send job in the sdp namespace. To do this..

$ kubectl apply -f deploy-sender.yaml -n sdp
job.batch/sender created

Looking at the logs in the sdp namespace we see that..

	A sender pod was created and has completed

	The receiver pod shows as completed

	A sender job has been deployed under ‘jobs’

$ kubectl get all -n sdp
NAME READY STATUS RESTARTS AGE
pod/pss-receive-q6dpd 0/1 Completed 0 27s
pod/realtime-20200203-0000-workflow-78fb74d48d-662rb 1/1 Running 0 33s
pod/sender-rvxgh 0/1 Completed 0 11s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/pss-receive ClusterIP 10.96.242.53 <none> 9021/UDP 27s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/realtime-20200203-0000-workflow 1/1 1 1 33s

NAME DESIRED CURRENT READY AGE
replicaset.apps/realtime-20200203-0000-workflow-78fb74d48d 1 1 1 33s

NAME COMPLETIONS DURATION AGE
job.batch/pss-receive 1/1 19s 27s
job.batch/sender 1/1 3s 11s

As before, looking at the logs for the sender and receiver pods, we can see the data that was sent/received.

Tidying up

Now we can stop the sender job and remove the processing block from the configuration

$ sdpcfg delete /pb/realtime-20200203-0000
$ kubectl delete job sender -n sdp

Deploying the SDP via TANGO

(More generalised documentation can be found at https://developer.skatelescope.org/projects/sdp-prototype/en/latest/running/running_standalone.html#accessing-tango

Connect to the TANGO interface

kubectl exec -it itango-tango-base-sdp-prototype -- /venv/bin/itango3

Create an interface to the SDP-subarray-1 TANGO device

d = DeviceProxy('mid_sdp/elt/master')

We can check the obsState of the sub-array which is currently IDLE.

d.obsState

We can then set the configuration of the Scheduling Block Instance by defining a JSON string containing information about the scan parameters and the workflow(s) to be deployed.

 config = '''
 {
 "id": "sbi-test-20200715-00000",
 "max_length": 600.0,
 "scan_types": [
 {
 "id": "science",
 "channels": [
 {"count": 372, "start": 0, "stride": 2, "freq_min": 0.35e9, "freq_max": 0.358e9, "link_map": [[0,0], [200,1]]}
]
 }
],
 "processing_blocks": [
 {
 "id": "pb-test-20200715-00000",
 "workflow": {"type": "realtime", "id": "test_receive_addresses", "version": "0.3.2"},
 "parameters": {}
 },
 {
 "id": "pb-test-20200715-00001",
 "workflow": {"type": "realtime", "id": "pss_receive", "version": "0.2.0"},
 "parameters": {}
 }
]
}'''

In this case the workflows are test_receive_addresses and pss_receive. If we look at the processes that are running in the sdp namespace we can see that the two workflows have been deployed and the pss-receive workflow has deployed the pss-receive container (the test_receive_addresses workflow does not trigger any deployments).

[bshaw@dokimi ~]$ kubectl get all -n sdp
NAME READY STATUS RESTARTS AGE
pod/proc-pb-test-20200715-00000-workflow-dm48x 1/1 Running 0 2m
pod/proc-pb-test-20200715-00001-workflow-j8kbj 1/1 Running 0 2m
pod/pss-receive-sbwxz 1/1 Running 0 1m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/pss-receive ClusterIP 10.96.84.108 <none> 9021/UDP 1m

NAME COMPLETIONS DURATION AGE
job.batch/proc-pb-test-20200715-00000-workflow 0/1 42m 2m
job.batch/proc-pb-test-20200715-00001-workflow 0/1 42m 2m
job.batch/pss-receive

We can then set the scan type using the Configure() method.

d.Configure('{"scan_type": "science"}')

At this point our subarray has entered a READY state. We then set the scan running with the Scan() method.

d.Scan('{"id": 1}')

Now the subarray has entered a SCANNING state and data is being acquired. We can emulate the flow of data into the SDP from PSS by deployed the dummer sender by the same method as above. In a separate terminal,

cd /[...]/sdp-prototype/src/pss_receive/pss-send
kubectl apply -f deploy-sender.yaml

This will deploy a sender job (called sender) into the sdp namespace. This has sent some candidate data to the receiver, after which both the sender and receiver enter a “completed” state.

[bshaw@dokimi ~]$ kubectl get all -n sdp
NAME READY STATUS RESTARTS AGE
pod/proc-pb-test-20200715-00000-workflow-dm48x 1/1 Running 0 71m
pod/proc-pb-test-20200715-00001-workflow-j8kbj 1/1 Running 0 71m
pod/pss-receive-sbwxz 0/1 Completed 0 69m
pod/sender-jrm6t 0/1 Completed 0 4m37s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/pss-receive ClusterIP 10.96.84.108 <none> 9021/UDP 69m

NAME COMPLETIONS DURATION AGE
job.batch/proc-pb-test-20200715-00000-workflow 0/1 71m 71m
job.batch/proc-pb-test-20200715-00001-workflow 0/1 71m 71m
job.batch/pss-receive 1/1 64m 69m
job.batch/sender

Now we can end the scan

d.EndScan()

and the subarray reverts to the READY state. We then clear the scan-type with.

d.Reset()

and the subarray returns to the IDLE state. The SDP resources can then be freed using

d.ReleaseResources()

which sets the workflows into a “completed” state.

Ongoing work

Batch Imaging Workflow

The batch_imaging workflow is a proof-of-concept of integrate a scientific
workflow with the SDP prototype. It simulates visibilities and images them using
RASCIL with Dask as an execution engine.

The workflow simulates SKA1-Low visibility data in a range of hour angles from
-30 to 30 degrees and adds phase errors. The visibilities are then calibrated
and imaged using the ICAL pipeline.

The workflow creates buffer reservations for storing the visibilities and
images.

Parameters

The workflow parameters are:

	n_workers: number of Dask workers to deploy

	freq_min: minimum frequency (in hertz)

	freq_max: maximum frequency (in hertz)

	nfreqwin: number of frequency windows

	ntimes: number of time samples

	rmax: maximum distance of stations to include from array centre (in metres)

	ra: right ascension of the phase centre (in degrees)

	dec: declination of the phase centre (in degrees)

	buffer_vis: name of the buffer reservation to store visibilities

	buffer_img: name of the buffer reservation to store images

For example:

{
 "n_workers": 4,
 "freq_min": 0.9e8,
 "freq_max": 1.1e8,
 "nfreqwin": 8,
 "ntimes": 5,
 "rmax": 750.0,
 "ra": 0.0,
 "dec": -30.0,
 "buffer_vis": "buff-pb-mvp01-20200523-00001-vis",
 "buffer_img": "buff-pb-mvp01-20200523-00001-img"
}

Running the workflow

If using Minikube, make sure to increase the memory size (minimum 16 GB):

minikube start --memory=16g

Once the sdp-prototype is running, start a iTango shell with:

kubectl exec -it itango-tango-base-sdp-prototype -- /venv/bin/itango3

First, obtain a handle to a subarray device with:

d = DeviceProxy('mid_sdp/elt/subarray_1')

Create a configuration string for the scheduling block instance. This contains
one real-time processing block, which uses the test_realtime workflow as a
placeholder, and one batch processing block containing the batch_imaging
workflow, which uses the example parameters from above:

config_sbi = '''
{
 "id": "sbi-mvp01-20200523-00000",
 "max_length": 21600.0,
 "scan_types": [
 {
 "id": "science",
 "channels": [
 {"count": 8, "start": 0, "stride": 1, "freq_min": 0.9e8, "freq_max": 1.1e8, "link_map": [[0,0]]}
]
 }
],
 "processing_blocks": [
 {
 "id": "pb-mvp01-20200523-00000",
 "workflow": {"type": "realtime", "id": "test_realtime", "version": "0.2.0"},
 "parameters": {}
 },
 {
 "id": "pb-mvp01-20200523-00001",
 "workflow": {"type": "batch", "id": "batch_imaging", "version": "0.1.0"},
 "parameters": {
 "n_workers": 4,
 "freq_min": 0.9e8,
 "freq_max": 1.1e8,
 "nfreqwin": 8,
 "ntimes": 5,
 "rmax": 750.0,
 "ra": 0.0,
 "dec": -30.0,
 "buffer_vis": "buff-pb-mvp01-20200523-00001-vis",
 "buffer_img": "buff-pb-mvp01-20200523-00001-img"
 },
 "dependencies": [
 {"pb_id": "pb-mvp01-20200523-00000", "type": ["none"]}
]
 }
]
}
'''

The scheduling block instance is created by the AssignResources command:

d.AssignResources(config_sbi)

You can run the subarray commands as normal, but the batch processing does not
start until you end the real-time processing with the ReleaseResources
command:

d.ReleaseResources()

You can watch the pods and persistent volume clams (for the buffer reservations)
being deployed with:

watch kubectl get pod,pvc -n sdp

At this stage you should see a pod called
proc-pb-mvp01-20200523-00001-workflow-... and the status is RUNNING. To see
the logs, run:

kubectl logs <pod-name> -n sdp

and it should look like this:

INFO:batch_imaging:Claimed processing block pb-mvp01-20200523-00001
INFO:batch_imaging:Waiting for resources to be available
INFO:batch_imaging:Resources are available
INFO:batch_imaging:Creating buffer reservations
INFO:batch_imaging:Deploying Dask EE
INFO:batch_imaging:Running simulation pipeline
INFO:batch_imaging:Running ICAL pipeline
...

Accessing the data

The buffer reservations are realised as Kubernetes persistent volume claims.
They should have persistent volumes created to satisfy them automatically. The
name of the corresponding persistent volume is in the output of:

kubectl get pvc -n sdp

The location of the persistent volume in the filesystem is shown in the output
of:

kubectl describe pv <pv-name>

If you are running Kubernetes with Minikube in a VM, you need to log in to it
first to gain access to the files:

minikube ssh

Delivery workflow

This workflow provides a basic implementation of an SDP Delivery mechanism. It
uploads data from SDP buffer reservations to Google Cloud Platform (GCP). It
uses Dask as an execution engine.

Parameters

The workflow parameters are:

	bucket: name of the GCP storage bucket in which to upload the data

	buffers: list of buffers to upload to the storage bucket, each contains

	name: name of the buffer reservation

	destination: location to upload it in the bucket

	service_account: location of the GCP service account key (stored in a
Kubernetes secret)

	secret: name of the secret

	file: filename of the service account key

	n_workers: number of Dask workers to deploy

For example:

{
 "bucket": "delivery-test",
 "buffers": [
 {
 "name": "buff-pb-20200523-00000-test",
 "destination": "buff-pb-20200523-00000-test"
 }
],
 "service_account": {
 "secret": "delivery-gcp-service-account",
 "file": "service-account.json"
 },
 "n_workers": 1
}

Creating a GCP storage bucket to receive the data

The steps to create a GCP storage bucket for the delivery workflow are as
follows. GCP has ample documentation, so each step is linked to the relevant
section:

	Create a project [https://cloud.google.com/resource-manager/docs/creating-managing-projects].

	Create a storage bucket in the project [https://cloud.google.com/storage/docs/creating-buckets].

	Create a service account and download a key [https://cloud.google.com/iam/docs/creating-managing-service-accounts]:

* The service account must have the role "Storage Object Creator".
* Create and download a key in JSON format.

Adding the GCP service account key as a Kubernetes secret

To make the service account key available to the delivery workflow, it needs to
be uploaded to the cluster as a Kubernetes secret. The command to do this is:

kubectl create secret generic <secret-name> --from-file=<service-account-key> -n <sdp-namespace>

Using the values from the example parameters above and assuming the namespace
for the SDP dynamic deployments is sdp (the default), the command would be:

kubectl create secret generic delivery-gcp-service-account --from-file=service-account.json -n sdp

To check the secret has been created, you can use the command:

kubectl describe secret delivery-gcp-service-account -n sdp

and the output should look like:

Name: delivery-gcp-service-account
Namespace: sdp
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
service-account.json: 2382 bytes

Test Workflows

	Test Real-Time Workflow

	Test Batch Workflow

	Test Receive Addresses Workflow

	Test Dask Workflow

	Test Daliuge Workflow

Test Real-Time Workflow

The test_realtime workflow is designed to test the processing
controller logic concerning processing block dependencies.

The sequence of actions carried out by the workflow is:

	Claims processing block

	Sets processing block status to 'WAITING'

	Waits for resources_available to be True

	This is the signal from the processing controller that the workflow can run

	Sets processing block status to 'RUNNING'

	Waits for scheduling block status to be set to FINISHED

	This is the signal from the Subarray device that the scheduling block is finished

	Sets processing block status to 'FINISHED'

The workflow makes no deployments.

Test Batch Workflow

The test_batch workflow is designed to test the processing
controller logic concerning processing block dependencies.

The sequence of actions carried out by the workflow is:

	Claims processing block

	Reads value of duration parameter (type: float, units: seconds) from processing block

	Sets processing block status to 'WAITING'

	Waits for resources_available to be True

	This is the signal from the processing controller that the workflow can start

	Sets processing block status to 'RUNNING'

	Does some “processing” (i.e. sleeps) for the requested duration

	Sets processing block status to 'FINISHED'

The workflow makes no deployments.

Test Receive Addresses Workflow

Introduction

The purpose of this workflow is to test the mechanism for generating SDP
receive addresses from the channel link map for each scan type which is
contained in the list of scan types in the SB. The workflow picks it up from
there, uses it to generate the receive addresses for each scan type and writes
them to the processing block state. It consists of a map of scan type to a
receive address map. This address map get publishes to the appropriate
attribute once the SDP subarray finishes the transition following
AssignResources.

Testing

Start the sdp prototype with (Helm 3 syntax):

helm install test sdp-prototype

Once all the pods are running, connect to the Tango interface using the following command:

kubectl exec -it itango-tango-base-test /venv/bin/itango3

Obtain a handle to the device with:

d = DeviceProxy('mid_sdp/elt/subarray_1')

Here is the configuration string for the scheduling block instance:

config = '''
{
 "id": "sbi-mvp01-20200318-0001",
 "max_length": 21600.0,
 "scan_types": [
 {
 "id": "science_A",
 "coordinate_system": "ICRS", "ra": "02:42:40.771", "dec": "-00:00:47.84",
 "channels": [{
 "count": 744, "start": 0, "stride": 2, "freq_min": 0.35e9, "freq_max": 0.368e9, "link_map": [[0,0], [200,1], [744,2], [944,3]]
 },{
 "count": 744, "start": 2000, "stride": 1, "freq_min": 0.36e9, "freq_max": 0.368e9, "link_map": [[2000,4], [2200,5]]
 }]
 },
 {
 "id": "calibration_B",
 "coordinate_system": "ICRS", "ra": "12:29:06.699", "dec": "02:03:08.598",
 "channels": [{
 "count": 744, "start": 0, "stride": 2, "freq_min": 0.35e9, "freq_max": 0.368e9, "link_map": [[0,0], [200,1], [744,2], [944,3]]
 },{
 "count": 744, "start": 2000, "stride": 1, "freq_min": 0.36e9, "freq_max": 0.368e9, "link_map": [[2000,4], [2200,5]]
 }]
 }
],
 "processing_blocks": [
 {
 "id": "pb-mvp01-20200318-0001",
 "workflow": {"type": "realtime", "id": "test_receive_addresses", "version": "0.3.2"},
 "parameters": {}
 },
 {
 "id": "pb-mvp01-20200318-0002",
 "workflow": {"type": "realtime", "id": "test_realtime", "version": "0.2.0"},
 "parameters": {}
 }
]
} '''

Start the scheduling block instance by the AssignResources command:

d.AssignResources(config)

You can connect to the configuration database by running the following command:

kubectl exec -it deploy/test-sdp-prototype-console bash and from there to see the full list run sdpcfg ls -R /

To check if the receive addresses are updated in the processing block state correctly, run the following command:

sdpcfg list values /pb/pb-mvp01-20200318-0001/state

and the output should look like this:

/pb/pb-mvp01-20200318-0001/state = {
 "receive_addresses": {
 "calibration_B": {
 "host": [
 [
 0,
 "192.168.0.1"
],
 [
 2000,
 "192.168.0.1"
]
],
 "port": [
 [
 0,
 9000,
 1
],
 [
 2000,
 9000,
 1
]
]
 },
 "science_A": {
 "host": [
 [
 0,
 "192.168.0.1"
],
 [
 2000,
 "192.168.0.1"
]
],
 "port": [
 [
 0,
 9000,
 1
],
 [
 2000,
 9000,
 1
]
]
 }
 },
 "resources_available": true,
 "status": "RUNNING"
}

To access the SBI run this sdpcfg list values /sb/sbi-mvp01-20200318-0001

In there you should see that pb_receive_addresses is updated with the PB_ID.

This should now update the receiveAddresses attribute with receive addresses map
and that can be verified by running d.receiveAddresses and the output should look like this:

Out[4]: '{"calibration_B": {"host": [[0, "192.168.0.1"], [2000, "192.168.0.1"]], "port": [[0, 9000, 1], [2000, 9000, 1]]}, "science_A": {"host": [[0, "192.168.0.1"], [2000, "192.168.0.1"]], "port": [[0, 9000, 1], [2000, 9000, 1]]}}'

Test Dask Workflow

Test Daliuge Workflow

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 ska_sdp_config	

 	
 	
 ska_sdp_config.backend	

 	
 	
 ska_sdp_config.config	

 	
 	
 ska_sdp_config.entity.pb	

Index

 B
 | C
 | D
 | G
 | I
 | L
 | N
 | P
 | R
 | S
 | T
 | U
 | W

B

 	
 	backend() (ska_sdp_config.config.Config property)

C

 	
 	client_lease() (ska_sdp_config.config.Config property)

 	close() (ska_sdp_config.config.Config method)

 	Config (class in ska_sdp_config.config)

 	create_deployment() (ska_sdp_config.config.Transaction method)

 	
 	create_processing_block() (ska_sdp_config.config.Transaction method)

 	create_processing_block_state() (ska_sdp_config.config.Transaction method)

 	create_scheduling_block() (ska_sdp_config.config.Transaction method)

 	create_subarray() (ska_sdp_config.config.Transaction method)

D

 	
 	delete_deployment() (ska_sdp_config.config.Transaction method)

 	
 	dependencies() (ska_sdp_config.entity.pb.ProcessingBlock property)

 	dict_to_json() (in module ska_sdp_config.config)

G

 	
 	get_deployment() (ska_sdp_config.config.Transaction method)

 	get_processing_block() (ska_sdp_config.config.Transaction method)

 	get_processing_block_owner() (ska_sdp_config.config.Transaction method)

 	
 	get_processing_block_state() (ska_sdp_config.config.Transaction method)

 	get_scheduling_block() (ska_sdp_config.config.Transaction method)

 	get_subarray() (ska_sdp_config.config.Transaction method)

I

 	
 	id() (ska_sdp_config.entity.pb.ProcessingBlock property)

 	
 	is_processing_block_owner() (ska_sdp_config.config.Transaction method)

L

 	
 	lease() (ska_sdp_config.config.Config method)

 	list_deployments() (ska_sdp_config.config.Transaction method)

 	list_processing_blocks() (ska_sdp_config.config.Transaction method)

 	
 	list_scheduling_blocks() (ska_sdp_config.config.Transaction method)

 	list_subarrays() (ska_sdp_config.config.Transaction method)

 	loop() (ska_sdp_config.config.Transaction method)

N

 	
 	new_processing_block_id() (ska_sdp_config.config.Transaction method)

P

 	
 	parameters() (ska_sdp_config.entity.pb.ProcessingBlock property)

 	
 	ProcessingBlock (class in ska_sdp_config.entity.pb)

R

 	
 	raw() (ska_sdp_config.config.Transaction property)

S

 	
 	sbi_id() (ska_sdp_config.entity.pb.ProcessingBlock property)

 	ska_sdp_config.backend (module)

 	
 	ska_sdp_config.config (module)

 	ska_sdp_config.entity.pb (module)

T

 	
 	take_processing_block() (ska_sdp_config.config.Transaction method)

 	to_dict() (ska_sdp_config.entity.pb.ProcessingBlock method)

 	
 	Transaction (class in ska_sdp_config.config)

 	TransactionFactory (class in ska_sdp_config.config)

 	txn() (ska_sdp_config.config.Config method)

U

 	
 	update_processing_block() (ska_sdp_config.config.Transaction method)

 	update_processing_block_state() (ska_sdp_config.config.Transaction method)

 	
 	update_scheduling_block() (ska_sdp_config.config.Transaction method)

 	update_subarray() (ska_sdp_config.config.Transaction method)

W

 	
 	workflow() (ska_sdp_config.entity.pb.ProcessingBlock property)

 All modules for which code is available

	ska_sdp_config.config

	ska_sdp_config.entity.pb

 Source code for ska_sdp_config.config

"""High-level API for SKA SDP configuration."""

import os
import sys
from datetime import date
import json
from socket import gethostname

from . import backend as backend_mod, entity

[docs]class Config:
 """Connection to SKA SDP configuration."""

 def __init__(self, backend=None, global_prefix='', owner=None,
 **cargs):
 """
 Connect to configuration using the given backend.

 :param backend: Backend to use. Defaults to environment or etcd3 if
 not set.
 :param global_prefix: Prefix to use within the database
 :param owner: Dictionary used for identifying the process when claiming
 ownership.
 :param cargs: Backend client arguments
 """
 self._backend = self._determine_backend(backend, **cargs)

 # Owner dictionary
 if owner is None:
 owner = {
 'pid': os.getpid(),
 'hostname': gethostname(),
 'command': sys.argv
 }
 self.owner = dict(owner)

 # Prefixes
 assert global_prefix == '' or global_prefix[0] == '/'
 self.pb_path = global_prefix + '/pb/'
 self.sb_path = global_prefix + '/sb/'
 self.subarray_path = global_prefix + '/subarray/'
 self.deploy_path = global_prefix + '/deploy/'

 # Lease associated with client
 self._client_lease = None

 @property
 def backend(self):
 """ Get the backend database object. """
 return self._backend

 @staticmethod
 def _determine_backend(backend, **cargs):

 # Determine backend
 if not backend:
 backend = os.getenv('SDP_CONFIG_BACKEND', 'etcd3')

 # Instantiate backend, reading configuration from environment/dotenv
 if backend == 'etcd3':

 if 'host' not in cargs:
 cargs['host'] = os.getenv('SDP_CONFIG_HOST', '127.0.0.1')
 if 'port' not in cargs:
 cargs['port'] = int(os.getenv('SDP_CONFIG_PORT', '2379'))
 if 'protocol' not in cargs:
 cargs['protocol'] = os.getenv('SDP_CONFIG_PROTOCOL', 'http')
 if 'cert' not in cargs:
 cargs['cert'] = os.getenv('SDP_CONFIG_CERT', None)
 if 'username' not in cargs:
 cargs['username'] = os.getenv('SDP_CONFIG_USERNAME', None)
 if 'password' not in cargs:
 cargs['password'] = os.getenv('SDP_CONFIG_PASSWORD', None)

 return backend_mod.Etcd3Backend(**cargs)

 elif backend == 'memory':

 return backend_mod.MemoryBackend()

 else:

 raise ValueError(
 "Unknown configuration backend {}!".format(backend))

[docs] def lease(self, ttl=10):
 """
 Generate a new lease.

 Once entered can be associated with keys,
 which will be kept alive until the end of the lease. At that
 point a daemon thread will be started automatically to refresh
 the lease periodically (default seems to be TTL/4).

 :param ttl: Time to live for lease
 :returns: lease object
 """
 return self._backend.lease(ttl)

 @property
 def client_lease(self):
 """Return the lease associated with the client.

 It will be kept alive until the client gets closed.
 """
 if self._client_lease is None:
 self._client_lease = self.lease()
 self._client_lease.__enter__()

 return self._client_lease

[docs] def txn(self, max_retries=64):
 """Create a :class:`Transaction` for atomic configuration query/change.

 As we do not use locks, transactions might have to be repeated in
 order to guarantee atomicity. Suggested usage is as follows:

 .. code-block:: python

 for txn in config.txn():
 # Use txn to read+write configuration
 # [Possibly call txn.loop()]

 As the `for` loop suggests, the code might get run multiple
 times even if not forced by calling
 :meth:`Transaction.loop`. Any writes using the transaction
 will be discarded if the transaction fails, but the
 application must make sure that the loop body has no other
 observable side effects.

 :param max_retries: Number of transaction retries before a
 :class:`RuntimeError` gets raised.
 """
 return TransactionFactory(
 self, self._backend.txn(max_retries=max_retries))

[docs] def close(self):
 """Close the client connection."""
 if self._client_lease:
 self._client_lease.__exit__(None, None, None)
 self._client_lease = None
 self._backend.close()

 def __enter__(self):
 """Scope the client connection."""
 return self

 def __exit__(self, exc_type, exc_val, exc_tb):
 """Scope the client connection."""
 self.close()
 return False

[docs]class TransactionFactory:
 """Helper object for making transactions."""

 def __init__(self, config, txn):
 """Create transaction factory."""
 self._config = config
 self._txn = txn

 def __iter__(self):
 """Create new transaction objects."""
 for txn in self._txn:
 yield Transaction(self._config, txn)

[docs]def dict_to_json(obj):
 """Format a dictionary for writing it into the database.

 :param obj: Dictionary object to format
 :returns: String representation
 """
 # We only write dictionaries (JSON objects) at the moment
 assert isinstance(obj, dict)
 # Export to JSON. No need to convert to ASCII, as the backend
 # should handle unicode. Otherwise we optimise for legibility
 # over compactness.
 return json.dumps(
 obj, ensure_ascii=False,
 indent=2, separators=(',', ': '), sort_keys=True)

[docs]class Transaction:
 """High-level configuration queries and updates to execute atomically."""

 def __init__(self, config, txn):
 """Instantiate transaction."""
 self._cfg = config
 self._txn = txn
 self._pb_path = config.pb_path
 self._sb_path = config.sb_path
 self._subarray_path = config.subarray_path
 self._deploy_path = config.deploy_path

 @property
 def raw(self):
 """Return transaction object for accessing database directly."""
 return self._txn

 def _get(self, path):
 """Get a JSON object from the database."""
 txt = self._txn.get(path)
 if txt is None:
 return None
 return json.loads(txt)

 def _create(self, path, obj, lease=None):
 """Set a new path in the database to a JSON object."""
 self._txn.create(path, dict_to_json(obj), lease)

 def _update(self, path, obj):
 """Set a existing path in the database to a JSON object."""
 self._txn.update(path, dict_to_json(obj))

[docs] def loop(self, wait=False, timeout=None):
 """Repeat transaction regardless of whether commit succeeds.

 :param wait: If transaction succeeded, wait for any read
 values to change before repeating it.
 :param timeout: Maximum time to wait, in seconds
 """
 return self._txn.loop(wait, timeout)

[docs] def list_processing_blocks(self, prefix=""):
 """Query processing block IDs from the configuration.

 :param prefix: If given, only search for processing block IDs
 with the given prefix
 :returns: Processing block ids, in lexicographical order
 """
 # List keys
 pb_path = self._pb_path
 keys = self._txn.list_keys(pb_path + prefix)

 # return list, stripping the prefix
 assert all([key.startswith(pb_path) for key in keys])
 return list([key[len(pb_path):] for key in keys])

[docs] def new_processing_block_id(self, generator: str):
 """Generate a new processing block ID that is not yet in use.

 :param generator: Name of the generator
 :returns: Processing block ID
 """
 # Find existing processing blocks with same prefix
 pb_id_prefix = "pb-{}-{}".format(
 generator,
 date.today().strftime('%Y%m%d'))
 existing_ids = self.list_processing_blocks(pb_id_prefix)

 # Choose ID that doesn't exist
 for pb_ix in range(100000):
 pb_id = "{}-{:05}".format(pb_id_prefix, pb_ix)
 if pb_id not in existing_ids:
 break
 if pb_ix >= 100000:
 raise RuntimeError("Exceeded daily number of processing blocks!")
 return pb_id

[docs] def get_processing_block(self, pb_id: str) -> entity.ProcessingBlock:
 """
 Look up processing block data.

 :param pb_id: Processing block ID to look up
 :returns: Processing block entity, or None if it doesn't exist
 """
 dct = self._get(self._pb_path + pb_id)
 if dct is None:
 return None
 return entity.ProcessingBlock(**dct)

[docs] def create_processing_block(self, pb: entity.ProcessingBlock):
 """
 Add a new :class:`ProcessingBlock` to the configuration.

 :param pb: Processing block to create
 """
 assert isinstance(pb, entity.ProcessingBlock)
 self._create(self._pb_path + pb.id, pb.to_dict())

[docs] def update_processing_block(self, pb: entity.ProcessingBlock):
 """
 Update a :class:`ProcessingBlock` in the configuration.

 :param pb: Processing block to update
 """
 assert isinstance(pb, entity.ProcessingBlock)
 self._update(self._pb_path + pb.id, pb.to_dict())

[docs] def get_processing_block_owner(self, pb_id: str) -> dict:
 """
 Look up the current processing block owner.

 :param pb_id: Processing block ID to look up
 :returns: Processing block owner data, or None if not claimed
 """
 dct = self._get(self._pb_path + pb_id + "/owner")
 if dct is None:
 return None
 return dct

[docs] def is_processing_block_owner(self, pb_id: str) -> bool:
 """
 Check whether this client is owner of the processing block.

 :param pb_id: Processing block ID to look up
 :returns: Whether processing block exists and is claimed
 """
 return self.get_processing_block(pb_id) is not None and \
 self.get_processing_block_owner(pb_id) == self._cfg.owner

[docs] def take_processing_block(self, pb_id: str, lease):
 """
 Take ownership of the processing block.

 :param pb_id: Processing block ID to take ownership of
 :raises: backend.ConfigCollision
 """
 # Lease must be provided
 assert lease is not None

 # Provide information identifying this process
 self._create(self._pb_path + pb_id + "/owner", self._cfg.owner, lease)

[docs] def get_processing_block_state(self, pb_id: str) -> dict:
 """
 Get the current processing block state.

 :param pb_id: Processing block ID
 :returns: Processing block state, or None if not present
 """
 state = self._get(self._pb_path + pb_id + "/state")
 if state is None:
 return None
 return state

[docs] def create_processing_block_state(self, pb_id: str, state: dict):
 """
 Create processing block state.

 :param pb_id: Processing block ID
 :param state: Processing block state to create
 """
 self._create(self._pb_path + pb_id + "/state", state)

[docs] def update_processing_block_state(self, pb_id: str, state: dict):
 """
 Update processing block state.

 :param pb_id: Processing block ID
 :param state: Processing block state to update
 """
 self._update(self._pb_path + pb_id + "/state", state)

[docs] def get_deployment(self, deploy_id: str) -> entity.Deployment:
 """
 Retrieve details about a cluster configuration change.

 :param deploy_id: Name of the deployment
 :returns: Deployment details
 """
 dct = self._get(self._deploy_path + deploy_id)
 return entity.Deployment(**dct)

[docs] def list_deployments(self, prefix=""):
 """
 List all current deployments.

 :returns: Deployment IDs
 """
 # List keys
 keys = self._txn.list_keys(self._deploy_path + prefix)

 # return list, stripping the prefix
 assert all([key.startswith(self._deploy_path) for key in keys])
 return list([key[len(self._deploy_path):] for key in keys])

[docs] def create_deployment(self, dpl: entity.Deployment):
 """
 Request a change to cluster configuration.

 :param dpl: Deployment to add to database
 """
 # Add to database
 assert isinstance(dpl, entity.Deployment)
 self._create(self._deploy_path + dpl.id,
 dpl.to_dict())

[docs] def delete_deployment(self, dpl: entity.Deployment):
 """
 Undo a change to cluster configuration.

 :param dpl: Deployment to remove
 """
 # Delete all data associated with deployment
 deploy_path = self._deploy_path + dpl.id
 for key in self._txn.list_keys(deploy_path, recurse=5):
 self._txn.delete(key)

[docs] def list_scheduling_blocks(self, prefix=""):
 """Query scheduling block IDs from the configuration.

 :param prefix: if given, only search for scheduling block IDs
 with the given prefix
 :returns: scheduling block IDs, in lexicographical order
 """
 # List keys
 sb_path = self._sb_path
 keys = self._txn.list_keys(sb_path + prefix)

 # Return list, stripping the prefix
 assert all([key.startswith(sb_path) for key in keys])
 return list([key[len(sb_path):] for key in keys])

[docs] def get_scheduling_block(self, sb_id: str) -> dict:
 """
 Get scheduling block.

 :param sb_id: scheduling block ID
 :returns: scheduling block state
 """
 state = self._get(self._sb_path + sb_id)
 return state

[docs] def create_scheduling_block(self, sb_id: str, state: dict):
 """
 Create scheduling block.

 :param sb_id: scheduling block ID
 :param state: scheduling block state
 """
 self._create(self._sb_path + sb_id, state)

[docs] def update_scheduling_block(self, sb_id: str, state: dict):
 """
 Update scheduling block.

 :param sb_id: scheduling block ID
 :param state: scheduling block state
 """
 self._update(self._sb_path + sb_id, state)

[docs] def list_subarrays(self, prefix=""):
 """Query subarray IDs from the configuration.

 :param prefix: if given, only search for subarray IDs
 with the given prefix
 :returns: subarray IDs, in lexicographical order
 """
 # List keys
 subarray_path = self._subarray_path
 keys = self._txn.list_keys(subarray_path + prefix)

 # Return list, stripping the prefix
 assert all([key.startswith(subarray_path) for key in keys])
 return list([key[len(subarray_path):] for key in keys])

[docs] def get_subarray(self, subarray_id: str) -> dict:
 """
 Get subarray.

 :param subarray_id: subarray ID
 :returns: subarray state
 """
 state = self._get(self._subarray_path + subarray_id)
 return state

[docs] def create_subarray(self, subarray_id: str, state: dict):
 """
 Create subarray.

 :param subarray_id: subarray ID
 :param state: subarray state
 """
 self._create(self._subarray_path + subarray_id, state)

[docs] def update_subarray(self, subarray_id: str, state: dict):
 """
 Update subarray.

 :param subarray_id: subarray ID
 :param state: subarray state
 """
 self._update(self._subarray_path + subarray_id, state)

 Source code for ska_sdp_config.entity.pb

"""Processing block configuration entities."""

import re
import copy

Permit identifiers up to 64 bytes in length
_PB_ID_RE = re.compile("^[A-Za-z0-9\\-]{1,64}$")

[docs]class ProcessingBlock:
 """Processing block entity.

 Collects configuration information relating to a processing job
 for the SDP. This might be either real-time (supporting a running
 observation) or batch (to process data after the fact).

 Actual execution of processing steps will be performed by a
 (parameterised) workflow interpreting processing block information.
 """

 # pylint: disable=dangerous-default-value
 # pylint: disable=redefined-builtin

 def __init__(self, id, sbi_id, workflow,
 parameters={}, dependencies=[],
 **kwargs):
 """
 Create a new processing block structure.

 :param id: Processing block ID
 :param sbi_id: Scheduling block ID (None if not associated with an SBI)
 :param workflow: Workflow description (dictionary for now)
 :param parameters: Workflow parameters
 :param dependencies: Dependencies on other processing blocks (not for
 real-time processing)
 :param dct: Dictionary to load from (will ignore other parameters)
 :returns: ProcessingBlock object
 """
 # Get parameter dictionary
 self._dict = {
 'id': str(id),
 'sbi_id': None if sbi_id is None else str(sbi_id),
 'workflow': dict(copy.deepcopy(workflow)),
 'parameters': dict(copy.deepcopy(parameters)),
 'dependencies': list(copy.deepcopy(dependencies))
 }
 self._dict.update(kwargs)

 # Validate
 if not set(self.workflow) >= {'type', 'id', 'version'}:
 raise ValueError("Workflow must specify type, ID and version!")
 if not _PB_ID_RE.match(self.id):
 raise ValueError("Processing block ID {} not permissible!".format(
 self.id))

[docs] def to_dict(self):
 """Return data as dictionary."""
 return self._dict

 @property
 def id(self):
 """Return the processing block ID."""
 return self._dict['id']

 @property
 def sbi_id(self):
 """Return scheduling block instance ID, if associated with one."""
 return self._dict.get('sbi_id')

 @property
 def workflow(self):
 """Return information identifying the workflow."""
 return self._dict['workflow']

 @property
 def parameters(self):
 """Return workflow-specific parameters."""
 return self._dict['parameters']

 @property
 def dependencies(self):
 """Return dependencies on other processing blocks."""
 return self._dict['dependencies']

 def __repr__(self):
 """Build string representation."""
 return "ProcessingBlock({})".format(
 ", ".join(["{}={}".format(k, repr(v))
 for k, v in self._dict.items()]))

 def __eq__(self, other):
 """Equality check."""
 return self.to_dict() == other.to_dict()

	Workflow Development

	Visibility Receive Workflow

	PSS Receive Workflow

	Deploying the SDP via TANGO

	Batch Imaging Workflow

	Delivery workflow

	Test Workflows

 _static/file.png

_static/minus.png

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

_static/plus.png

nav.xhtml

 Table of Contents

 		
 SDP Prototype

 		
 Getting Started

 		
 I want to..

 		
 Understand the design of the SDP prototype

 		
 Set up the SDP prototype in a local development environment

 		
 Run the SDP prototype stand-alone

 		
 Run the SDP Prototype in the integration environment

 		
 Find out about the SDP Tango devices

 		
 Know more about the SDP configuration database

 		
 Understand the design of the services

 		
 Run workflows

 		
 Develop a workflow

 		
 Design Overview

 		
 Introduction

 		
 Components

 		
 Module View

 		
 Setting up a local development environment

 		
 Kubernetes

 		
 Docker and Minikube

 		
 Micro8ks

 		
 Helm

 		
 Setting up on Windows

 		
 Install and configure tools

 		
 Fix the line ends

 		
 Running the SDP Prototype stand-alone

 		
 Installing the etcd operator

 		
 Deploying the SDP

 		
 Testing it out

 		
 Connecting to the configuration database

 		
 Starting a workflow

 		
 Cleaning up

 		
 Accessing Tango

 		
 Removing the SDP

 		
 Troubleshooting

 		
 etcd doesn’t start (DNS problems)

 		
 Running the SDP Prototype in the integration environment

 		
 SDP Master Device

 		
 Introduction

 		
 Interface

 		
 Attributes

 		
 Commands

 		
 Python API

 		
 SDP Subarray Device

 		
 Introduction

 		
 State Model

 		
 Behaviour

 		
 Interface

 		
 Attributes

 		
 Commands

 		
 Python API

 		
 Building and testing

 		
 Configuration Database

 		
 Installation

 		
 Basic Usage

 		
 Command line

 		
 Configuration Schema

 		
 Design Principles

 		
 Scheduling Block

 		
 Processing Block

 		
 Processing Block State

 		
 Processing Block Owner

 		
 Configuration API

 		
 High-Level API

 		
 Entities

 		
 Backend

 		
 Processing Controller

 		
 Introduction

 		
 Processing block and its state

 		
 Behaviour

 		
 Helm Deployer

 		
 Workflow Development

 		
 Additional steps to build a custom execution engine

 		
 Visibility Receive Workflow

 		
 Dependencies

 		
 Build Instructions

 		
 Test Instructions

 		
 Starting the receiver

 		
 Staring the sender

 		
 PSS Receive Workflow

 		
 Dependencies

 		
 Description

 		
 Running send and receive standalone

 		
 Start the receiver

 		
 Start the sender

 		
 Deploying receive as an sdp component

 		
 Sending some data

 		
 Tidying up

 		
 Deploying the SDP via TANGO

 		
 Ongoing work

 		
 Batch Imaging Workflow

 		
 Parameters

 		
 Running the workflow

 		
 Accessing the data

 		
 Delivery workflow

 		
 Parameters

 		
 Creating a GCP storage bucket to receive the data

 		
 Adding the GCP service account key as a Kubernetes secret

 		
 Test Workflows

 		
 Test Real-Time Workflow

 		
 Test Batch Workflow

 		
 Test Receive Addresses Workflow

 		
 Introduction

 		
 Testing

 		
 Test Dask Workflow

 		
 Test Daliuge Workflow

