
project-name Documentation
Release 0.1.0

author

Sep 21, 2020





For dashboard developer:

1 Official documentation 3
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Steps to get Webjive running locally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Webjive users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Docker services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Joint Process for Contribution between Max IV and SKA . . . . . . . . . . . . . . . . . . . . . . . 13
1.8 Basic steps to link Webjive to a real tango device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.9 Webjive Suite Publish-Subscribe Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.10 TangoGQL Logging in SKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Prerequsities 29

3 Development of the OSO-UI applications 31

i



ii



project-name Documentation, Release 0.1.0

This project defines a container environment that integrates OSO-UI applications with TMC devices and a Tango
control system. It defines a set of docker-compose configurations for OSO-UI applications and their dependencies so
that a test integrated system can be instantiated on a developer’s laptop or workstation.

The documentation is composed of three parts. The Dashboard developer, which explains how to use Webjive, step
by step, for end user. The developer part, which shows technical aspects of Webjive. And External Resources with
a list of useful documentation regarding Webjive and other tools.

For dashboard developer: 1



project-name Documentation, Release 0.1.0

2 For dashboard developer:



CHAPTER 1

Official documentation

In this documentation, only documents regarding SKA are reported. For the complete documentation of Webjive and
TangoGQL, please refer to the official documentation.

Webjive Webjive is a web-based program that allows a user to create a visual interface using widgetswhich may
include charts, numerical indicators or dials that interface to Tango device back end database. WebJive General
documentation is available in the following link, : https://webjive.readthedocs.io/en/latest/index.html In the
documentation you will find sections as:

• Architecture: a description of the Webjive Software Architecture

• Widgets: the documentation of how the widgets works

• How to deploy a widget

TangoGQL

A GraphQL implementation for Tango, used by Webjive to access the Tango Controls Framework
TangoGQL General documentation is available in the following link, : https://web-maxiv-tangogql.
readthedocs.io/en/latest/

In the documentation you will find sections as:

• API Documentation

• Examples

• TangoGQL features and convention

Webjive authorization Webjive authorization (work in progress): https://webjive-auth.readthedocs.io/en/latest/

Webjive Dashboard Webjive Dashboard (work in progress): https://webjive-dashboards.readthedocs.io/en/latest/

1.1 Overview

Webjive is a web-based program that allows a user to create a visual interface using widgets, which may include charts,
numerical indicators or dials that interface to Tango device back end database. Details of how this is programmati-

3

https://webjive.readthedocs.io/en/latest/index.html
https://webjive.readthedocs.io/en/latest/widget.html
https://web-maxiv-tangogql.readthedocs.io/en/latest/
https://web-maxiv-tangogql.readthedocs.io/en/latest/
https://web-maxiv-tangogql.readthedocs.io/en/latest/api.html
https://web-maxiv-tangogql.readthedocs.io/en/latest/examples.html
https://webjive-auth.readthedocs.io/en/latest/
https://webjive-dashboards.readthedocs.io/en/latest/


project-name Documentation, Release 0.1.0

cally achieved is presented in a developer biased document which can be found at: https://developer.skatelescope.org/
projects/ska-engineering-ui-compose-utils/en/latest/device.html

Webjive was conceived and originally created by the MAX IV synchrotron facility in Lund, Sweden. During the
early User Interface identification and downselect process conducted by the SKA OSO-UI Buttons team, Webjive
was highlighted as a possible candidate to be taken forward as the platform upon which the SKA Engineering User
Interface could be built. In early 2019 discussions between MAX IV and OSO-UI Buttons team (overseen by SKA)
were held and it was agreed that a collaborate relationship could be taken forward to develop and maintain Webjive.

Logging into Webjive presents the user with a screen showing the available Tango devices that can be interfaced with
and some general statistics regarding the connected Tango database. An example of this is shown in Figure 1

.

Figure 1. Screenshot to show the Webjive screen when user goes to ‘localhost:22484/testdb’ in web browser.

1.1.1 Webjive Widgets

The right hand side of the web interface, as highlighted in figure 2, presents the Webjive widgets which can be utilised
in the creation of the Engineering User Interface by the user .

4 Chapter 1. Official documentation

https://developer.skatelescope.org/projects/ska-engineering-ui-compose-utils/en/latest/device.html
https://developer.skatelescope.org/projects/ska-engineering-ui-compose-utils/en/latest/device.html


project-name Documentation, Release 0.1.0

.

Figure 2. Screenshot to show Webjive screen when user goes to ‘localhost:22484 /testdb/dashboard’ in web
browser. The available widgets are located on the right of the screen.

Webjive widgets, like react widgets, are components which allow the user to obtain, view and handle their data in a
straightforward and repeatable manner.

Webjive widget are listed in the Webjive Official Documentation: https://webjive.readthedocs.io/en/latest/index.html

1.1.2 TangoGQL

The left hand side of the web interface houses the accessible Tango database devices. It should be possible to use the
Tango Controls program Jive to access the same Tango devices database as what is presented in this column.

.

1.1. Overview 5

https://webjive.readthedocs.io/en/latest/index.html


project-name Documentation, Release 0.1.0

Figure 3. Screenshot to show the devices screen of Webjive. Tango devices that may be connected to are
presented on the left of the screen.

Linking to TangoGQL

This activity should be viewed as a developer level activity. As such a procedure to add Tango devices
to the linked database is provided in the SKA Developer portal at: https://developer.skatelescope.org/projects/
ska-engineering-ui-compose-utils/en/latest/device.html

1.2 Steps to get Webjive running locally

The guide below assumes that the user has no previous versions of Webjive installed. At the time of writing there are a
number of ways in which Webjive can be launched. However from a user point of view the way that should be adopted
is given below because it will ensure that the ‘latest’ stable version is used. This guide assumes no previous versions
of Webjive are present. [#F1]_

1.2.1 Prerequisites

It is assumed that the following are installed and working correctly before attempting to launch Webjive:

• Python 2.7.x

• Make

• Sphinx

• Git

• Docker 3.0

Steps

1. Obtain the latest ska-engineering-ui-compose-utils project from the. https://github.com/ska-telescope/
ska-engineering-ui-compose-utils repository. The local ReadMe of this repository describes how to get We-
bjive up and running. Steps 2-4 below summarise the process.

2. Launch Webjive and TangoGQL. Using the terminal / command prompt, navigate to the local copy of ska-
engineering-ui-compose-utils. Use the following make command to begin the setup process:

make up

This step may take some time to complete because all of the supporting material for Webjive will be acquired from
various repositories before being installed.

1. Go to your local web-browser and enter the following into the address / URL bar:

localhost:22484/testdb/dashboard

The web browser should present a screen similar to that shown in figure 2.

1. At the top right-hand corner of the webpage (not the browser) click on the login button and enter the following
credentials[#F2]_.

6 Chapter 1. Official documentation

https://developer.skatelescope.org/projects/ska-engineering-ui-compose-utils/en/latest/device.html
https://developer.skatelescope.org/projects/ska-engineering-ui-compose-utils/en/latest/device.html
https://github.com/ska-telescope/ska-engineering-ui-compose-utils
https://github.com/ska-telescope/ska-engineering-ui-compose-utils


project-name Documentation, Release 0.1.0

.

Figure 4. Screenshot to show what the user should see when Webjive is running but no user logged in.

Currently SKA Webjive uses username and password reported in the Webjive User Document

.

Figure 5. Screenshot to show what the user should see when correctly logged in with the user1 credentials.

It should be noted that functionality is greatly reduced unless the user is logged in and it is not possible to save newly
created or edited dashboards.

1.3 Quick Start

This section aims to provide a high level guide to using Webjive in terms of starting and stopping a session. It also
provides an example of how a user can drag and drop a widget onto the canvas, followed by connecting it to a tango
device present in the tango device database. This example is not an extensive how to guide to guide the user through
all widget and device connection options, be rather an example which gives an idea about the approach that should be
adopted when using Webjive.

1.3.1 Starting the Webjive session

Once the user has placed widgets on the user interface screen and connected them to the appropriate tango device,
as described above, the session of Webjive can be started, i.e. data exchange between the device(s) and Webjive can
commence. To do this the ‘Start’ button on the top left of the screen should be pressed. If started successfully, the
‘Start’ button name should change to ‘Stop’, and after a short delay pertinent data should be presented in the widget(s).

1.3.2 Stopping the Webjive session

To end a running session of Webjive, the user should press the button labelled ‘Edit’ in the top left of the screen, which
is the exact same place where the ‘Start’ button was located.

1.3. Quick Start 7



project-name Documentation, Release 0.1.0

1.3.3 Connecting Tango devices to Webjive widgets

Click on the Webjive dashboard button from the localhost//:22484/testdb/ page to get to the canvas and widget menu,
as shown in figure 2.

Drag and drop the required widget on to the canvas. In this example the ‘attribute plot’ is dragged into the canvas, as
shown in Figure 6.

.

Figure 6. Screenshot showing the ‘attribute plot’ widget just dragged onto the canvas.

Once the widget is on the canvas the widget menu is replaced with a configuration table for the attribute plot, as can
be seen in Figure 6. In this instance the user has the option to change the time frame of the data that is shown on the
plot before the data begins to scroll. Click on the + labelled ‘Graphs’. Begin to type in the path to the device which is
to be connected to be presented with a reducing list of options of available devices (Figure 7).

8 Chapter 1. Official documentation



project-name Documentation, Release 0.1.0

.

Figure 7. Screenshot showing the ‘attribute plot’ tango device options once the + button pressed.

Click on that which you which to be displayed in the attribute plot. In this example we will select ‘sys/tg_test/1’ and
opt to retain the Y-axis on the left hand side of the display (Figure 8).

.

Figure 8. Screenshot showing sys/tg_test/1 being selected from Tango device options.

Now the user has to select an attribute(s) to be presented on the attribute plot. In this example we will opt to present
just one attribute on the plot, which will be ‘double scalar’ as can be seen in Figure 9. To add further plots to this
‘attribute plot’, click on the + and repeat the process of selecting the device and attribute followed for ‘double scalar’.

1.3. Quick Start 9



project-name Documentation, Release 0.1.0

.

Figure 9. Screenshot showing the double_scalar attribute of ‘sys/tg_test’ being linked to ‘attribute plot’.

Click on the ‘Start’ button. The buttons label changes to ‘Edit’, and the connection between the Tango device and the
Webjive widget is established. Data will begin to flow between the device and the widget and be presented on the plot.

.

Figure 10. Screenshot showing the population of ‘attribute plot’ when the Webjive session is running.

Note that once the Webjive session starts (Figure 10), the user will be unable to edit the widget parameters or canvas
layout until the session is stopped using the ‘Edit’ button.

To conclude the Webjive session, the user must press the ‘Edit’ button. This may seem counterintuitive, but in essence
the ‘Edit’ button is the Stop button. Pressing this button does not imply that the user must edit the canvas.

10 Chapter 1. Official documentation



project-name Documentation, Release 0.1.0

For the purposes of this example the Tango device ‘sys/tg_test/1’ belonging to the Webjive Demo Tango Database was
used. This is a good test device to use when setting up Webjive initially to establish correct operation. However when
using your own Tango device or linked database, the user should establish the validity of the data being presented on
the Webjive widget by some other means to ensure data integrity. One possible means of achieving this is to have an
instance of Tango Jive running in parallel to ensure that the data being seen on webjive is the same as that seen on Jive.

Webjive Session Persistence

A key feature of Webjive is the ability to save a session layout which a User has created, so that it can be reused
or edited in the future. It is important to note that exchanged data is not retained in this file, but rather the session
configuration and layout.

1.3.4 Saving the Webjive session

Once a Webjive session layout has been created and appropriate links between widgets and Tango devices, it can be
saved by giving the dashboard a new. A fresh dashboard automatically is named ‘Untitled dashboard’. The user can
simply click and delete this name and replace it with an appropriate dashboard name of choice.

1.3.5 Loading the Webjive session

To open a saved Webjive layout locate and click on the ‘Dashboards’ button (next to the Library button) at the top of
the widget drag and drop menu. This will present the user with all available Dashboards. Locate the Dashboard the
user wishes to open and click on it. After a short pause the dashboard will have loaded and its widgets displayed on
the canvas.

It should be noted that editing the canvas of a dashboard will automatically modify that dashboard and will be saved
as such.

Online Demo

It is possible to tryout Webjive before installing a local version. However this is limited in that the user cannot save
or edit canvas or add new Tango devices to the database. The following link leads to the latest version of the demo
available on the SKA repository. http://integration.engageska-portugal.pt/testdb

1.4 Webjive users

The following Users are set on Webjive:

User Password
DEFAULT DEFAULT_SKA
OMC OMC_SKA
BUTTON BUTTON_SKA
CIPA CIPA_SKA
NCRA NCRA_SKA
PERENTIE PERENTIE_SKA
KAROO KAROO_SKA
SKANET SKANET_SKA
MCCS MCCS_SKA
VIOLA VIOLA_SKA

1.4. Webjive users 11

http://integration.engageska-portugal.pt/testdb


project-name Documentation, Release 0.1.0

If your team is not above and you need a new user please drop a message in our #team-oso_ui channel

1.5 Docker services

The main content of this project is a set of Docker Compose files that define the containers (services) to run.

The following Docker services are defined:

Docker service Description
tangodb MariaDB database holding TANGO database tables
databaseds TANGO database device server
tangogql GraphQL interface to Tango control system
redis Redis in-memory key/value database
webjive WebJive container
auth WebJive authentication service
dashboards WebJive session persistence service
mongodb Database for WebJive session persistence
dishmaster TMC Dish LMC master Tango device
dishleafnode TMC Dish leaf node Tango device
subarraynode1 TMC SubArrayNode Tango device #1
subarraynode2 TMC SubArrayNode Tango device #2
centralnode TMC CentralNode Tango device
rsyslog-tmc rsyslog container for TMC devices
tangotest TANGO test device
jive Jive - Tango GUI application
traefik Reverse proxy used for WebJive HTTP routing
oet-ssh Observation Tool Command Line Interface

1.6 Usage

To pull the required Docker images from the SKA Docker registry, execute:

# download all required Docker images
make pull

Optional: the images can be pulled from an alternate registry and/or account by supplying the
DOCKER_REGISTRY_HOST and DOCKER_REGISTRY_USER Makefile variables respectively, e.g.,

# download foo/tango-cpp, foo/tango-jive, etc. from a registry at
# localhost:5000
make DOCKER_REGISTRY_HOST=localhost:5000 DOCKER_REGISTRY_USER=foo pull

To start WebJive and a minimal Tango system, execute:

# start WebJive and a Tango control system
make up

To start TMC devices, execute:

# start TMC devices
make tmc

12 Chapter 1. Official documentation



project-name Documentation, Release 0.1.0

Optional applications and device servers can be launched by calling the start make target followed by the name of the
service. For example:

# run Jive
make start jive
# run tangotest
make start tangotest

To display the status of the Docker services, execute

# print status of Docker services
make status

Running services can be stopped individually or as a whole using the stop make target or down make target respectively.
For instance,

# stop just the tangotest device server, leaving other services running
make stop tangotest
# stop all services and tear down the system
make down

After starting the WebJive containers and any required additional containers, navigate to http://localhost:22484/testdb
to access WebJive. The following credentials can be used:

Username user1

Password abc123

1.7 Joint Process for Contribution between Max IV and SKA

This relates to how the teams at Max IV and SKA have agreed to collaberate on supporting and ehancing the webjive
suite of tools.

1.7.1 What is this collaboration about?

This is a collaboration between software teams in MaxIV and the Square Kilometer Array (SKA) to jointly work on
developing the webjive suite. This is a number of closely related products that can be used to provide a web-based
interface to a Tango Control System.

1.7. Joint Process for Contribution between Max IV and SKA 13



project-name Documentation, Release 0.1.0

1.7.2 What are the Products we are collaborating on?

Purpose Repository Description
A tool for creating Dashboards for
interacting with the devices within a
Tango Control System

https:
//gitlab.com/
MaxIV/webjive

The tool for developing these dashboards is webjive it-
self.

Queryable access to a Tango Con-
trol System that can be used by the
dashboard creation tool

https://gitlab.
com/MaxIV/
web-maxiv-tangogql

Currently, this is a TangoGQL. A GraphQL web server
that integrates with the TangoDB services and cancom-
municate directly with tango devices.

Storing and Sharing the configura-
tion of developed dashboards be-
tween users

https://gitlab.
com/MaxIV/
dashboard-repo

A MongoDB based dashboard repository for storing we-
bjive dashboard layouts

Authorization and Authentication
for the tools

https://gitlab.
com/MaxIV/
webjive-auth

A simple authentication and authorization service for
the webjive and TangoGQL tools that can be hooked
into a corporate authentication solution

Supporting further development https://gitlab.
com/MaxIV/
webjive-develop

A set of developer scripts and tools used for setting up
and developing these related products.

This division is not defined in any specification, but rather has emerged from the needs of the application. In the future,
services might be added, merged or made obsolete.

1.7.3 Planning Process

Priorities are agreed on a regular basis between the MaxIV Product and Feature Owners who meet regularly with their
SKA compatriots. Within the SKA Planning fits within the current 3 monthly cycle for software. The outcomes of the
SKA planning and joint discussions with Max IV are:

• An agreed set of common priorities between SKA and MaxIV.

• An updated backlog of webjive suite features recorded as GitLab Issues against the relevant project ( general
issues being raised against webjive-develop )

• A single view of all the GitLab issues across the webjive suite that summarises the current GitLab Issues from
each of the contributing projects.

• A plan for the next 3 months of work covering which features are going to be worked on in which 2wk period,
with these features having an approximate size, acceptance criteria, an allocated feature owner and agreement
which team is best placed to tackle them.

(It is important that SKA discuss their priorities with MaxIV and vice versa before tickets are raised)

Once accepted as part of a team’s work for the next period the GitLab issue should be updated to include a cross-
reference to the internally tracked work item (JIRA for SKA / TAGIA for MaxIV)1

1.7.4 Making Changes

• There is a single master branch that should always be deployable and usable. This is supported by Contin-
uous Integration by both MaxIV and SKA

• Changes are made via short-lived feature branches that are merged back into master. Branch names should
reflect the GitLab ticket being worked on

• All changes should have an associated GitLab ticket.
1 There are plugins that might help to synchronise. TBC - need to add the details of the process.

14 Chapter 1. Official documentation

https://gitlab.com/MaxIV/webjive
https://gitlab.com/MaxIV/webjive
https://gitlab.com/MaxIV/webjive
https://gitlab.com/MaxIV/web-maxiv-tangogql
https://gitlab.com/MaxIV/web-maxiv-tangogql
https://gitlab.com/MaxIV/web-maxiv-tangogql
https://gitlab.com/MaxIV/dashboard-repo
https://gitlab.com/MaxIV/dashboard-repo
https://gitlab.com/MaxIV/dashboard-repo
https://gitlab.com/MaxIV/webjive-auth
https://gitlab.com/MaxIV/webjive-auth
https://gitlab.com/MaxIV/webjive-auth
https://gitlab.com/MaxIV/webjive-develop
https://gitlab.com/MaxIV/webjive-develop
https://gitlab.com/MaxIV/webjive-develop
https://gitlab.com/MaxIV/webjive-develop


project-name Documentation, Release 0.1.0

• All features are merged via pull requests - at least initially it would make sense to have all changes reviewed
by one MaxIV and one SKA developer before being merged back into master. HotFix/Emergency Fixes are
reviewed quickly by a second developer on the same side and communicated retrospectively Review policy
for planned changes when a change is ready for merging with the trunk the party responsible raises a pull
request, requesting a review with a priority (urgent, high medium, low priority). A priority defines generally
how urgently the review should be actioned. At this early stage of the collaboration, this is on a best efforts basis
without any specific deadlines. If it is not possible for the other party to review the code then the code will be
merged back to the master after peer review by another developer within the collaboration.

1.7.5 Testing

The tests for these projects are not currently comprehensive in terms of coverage. The ambition is to evolve this over
time. We want to ensure that new code developed is delivered with tests that demonstrate that it is fit for purpose, and
is documented in a way that makes it easy to maintain.

Testing legacy code

• It is not necessary to add tests on existing code.

• When a bug in legacy code has been discovered: open a GitHub issue, fix the bug and create tests. In this way,
it is possible to improve coverage.

Testing of new code or changed functionality:

• All new or changed code should have tests

• All new or changed code should have documentation

• Trunk should always be clean and deployable - no breaking code, all tests and linting OK. The CI/CD should
run cleanly on both sides.

1.7.6 Coding Standards and Programming Language Conventions

Webjive and related JavaScript based projects

We are starting from the principle that we want to move towards a defined coding standard, but without forcing a large
amount of cosmetic change on the existing codebase.

The following tools are integrated into the environments. This list may be expanded or change as the needs of the
project changes.

Purpose Tool of Choice
linting of files eslint, @typescript-eslint/parser and @typescript-eslint/eslint-plugin
testing of code jest, ts-jest, enzyme,
formatting of code prettier
code coverage jest
dependency management npm
CI/CD GitLab pipeline (gitlab-ci.yml file)

All existing code should as a minimum conform to the de-facto linting and formatting rules within the workspace.

These are currently relaxed in a number of areas, but the plan would be to improve the quality of the code over time
enforcing stricter rules based on best practices defined by Airbnb and Microsoft after discussion.

1.7. Joint Process for Contribution between Max IV and SKA 15



project-name Documentation, Release 0.1.0

Any exceptions to this would be documented on the publicly accessible SKA developer guidance for javascript.

For personal linting or formatting of code, it is suggested that developers use the appropriate AirBnB standards rules
and plugins for their preferred editor. Guidance for set-up and configuration to be supplied as part of the readme on
the projects

Use of Typescript

The use of Typescript is acknowledged and supported. It is quite acceptable for TSX files to contain JSX syntax. Type-
script code should conform to the current typescript rules for static typing (currently 2.7 is enforced 3.3 is suggested
for any new code)

For compatibility with the current codebase, the following rules are not enforced however any new or change code
should however be written so that it would compile and run with these rules in place

• strictFunctionTypes Ensure that all functions can be proved to be type safe.2

• strictPropertyInitialization Ensures that all properties are initialized for every possible code path.3

• noImplicitAny Currently if the compiler cannot infer the variable type based on how it’s used it silently defaults
the type to any. At some point, we want to switch this to true so that if the TypeScript compiler cannot infer the
type, it still generates the JavaScript files, but it also reports an error. This stricter type checking catches more
unintentional errors at compile time.

Code Structure

The code should, in general, be grouped by features or routes.4 with CSS, JS, and tests grouped together inside folders.
Follow the existing webjive structure where possible:

• dashboard : code relating to the main dashboard display and

• jive : code relating to the device lists and RHS panel

• shared code used by both

Within this structure, there is a separation between code related to the state management and the widgets presented on
the display.

The folder structure within ‘components’ reflecting a hierarchical view of the individual components.

TangoGQL and other Python-related projects

Any jointly developed changes should follow the SKA Python programming guidelines

1.7.7 Definition of Done

This is based on the SKA project ‘Definition of Done’ for software projects

2 see description & ref article in https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-6.html
3 see https://patrickdesjardins.com/blog/typescript-strictpropertyinitialization-should-be-turned-on
4 For a discussion of the benefits of grouping by structure see https://reactjs.org/docs/faq-structure.html

16 Chapter 1. Official documentation

http://developer.skatelescope.org/en/latest/development/python-codeguide.html
http://developer.skatelescope.org/en/latest/agile_practices/definition_of_done.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-6.html
https://patrickdesjardins.com/blog/typescript-strictpropertyinitialization-should-be-turned-on
https://reactjs.org/docs/faq-structure.html


project-name Documentation, Release 0.1.0

Ticket/Story

• Code is supplied with an acceptable license.

• Code is peer-reviewed (via pull-request process).

• Code is checked into the repository with reference to GitLab ticket.

• The code has tests that have adequate (between 75% and 90%) coverage5

• The code compiles cleanly with no warnings.

• Code adheres to SKA and MaxIV agreed language specific style.

• Code is deployed to a continuous integration environment for both MaxIV and SKA.

• The code passes regression testing.

• The code passes ‘smoke’ testing.

• NFRs are met

• The story is tested against acceptance criteria.

• The story is documented.

• Story ok-ed by Product Owner.

Code documentation

• Public API exposed is clearly documented

• Code is documented inline according to language-specific standards

• Documentation is peer-reviewed by stakeholder (e.g. Product Owner for a feature or technical peer for an
enabler) via the pull-request mechanism.

• Documentation is deployed to an externally visible website accessible via the SKA developer portal

Feature

• The feature has been demonstrated to relevant stakeholders

• Feature meets the acceptance criteria

• The feature is accepted by Feature owner

• The feature is integrated into both integration environments (MaxIV and SKA)

• Code documentation is integrated as part of the project documentation (and developer portal as relevant for
SKA)

• SKA / MaxIV Architectural documentation is updated to reflect the actual implementation

5 Pragmatism is assumed. We will focus testing on the core components where failure would impact multiple users. For example, users can
create and deploy their own custom widgets. A failing widget only impacts the users of that widget. Here good-enough testing to cover the situations
the widget has been developed for may well be more lightweight than the coverage percentages would suggest.

1.7. Joint Process for Contribution between Max IV and SKA 17



project-name Documentation, Release 0.1.0

1.7.8 Notes

1.8 Basic steps to link Webjive to a real tango device

This relates to how a developer can connect a new tango device to webjive.

1.8.1 First step setup the local developer environment

In order to have WebJive and a minimal Tango system working on your local environment you should follow the
guidelines on Usage. After the make up command you should see something like this on the command line:

To verify that everything is running well after those steps just go to and you should see something like this:

18 Chapter 1. Official documentation



project-name Documentation, Release 0.1.0

1.8.2 Create a new device to add on webjive

To create a new device on your local environment, just follow the documentation on . Alternately to test you can just
use the already built docker image on nexus.engageska-portugal.pt/tango-example/powersupply:latest

1.8.3 Setup tango device connection to webjive

The connection between webjive and a tango device or server is done by the var TANGO_HOST for more info about
this go to

To see how to setup the connection between tango-example and webjive just follow

This tango-example.yml file is already in this project, to start up tango-example just do

make start tango-example

By the end of the command if you go to http://localhost:22484/testdb you should see the following:

1.8. Basic steps to link Webjive to a real tango device 19

http://localhost:22484/testdb


project-name Documentation, Release 0.1.0

1.8.4 Debug the created tango device

In order to be able to debug the device you just created you can for example run the following code1:

TANGO_HOST=databaseds:10000 NETWORK_MODE=tangonet MYSQL_HOST=tangodb:3306 CONTAINER_
→˓NAME_PREFIX= COMPOSE_IGNORE_ORPHANS=true docker-compose -f tango-example.yml up

Then you should see this on the command line:

This is the output of tango-example device (powersupply), this will vary from different devices

In order to debug all the devices and webjive-suite itself you can just run2:

make debug

You should see something like this on the command line:

1 The vars my change on different machines, running make up you get your vars on the command line
2 This will also start jive

20 Chapter 1. Official documentation



project-name Documentation, Release 0.1.0

This will update with the runtime debug, you can just refresh the webjive page to see the output

1.8.5 Notes

1.9 Webjive Suite Publish-Subscribe Mechanism

1.9.1 Introduction

Publish/Subscribe is a software design pattern that describes the flow of messages between applications, devices, or
services in terms of a publisher-to-subscriber relationship.

publish/subscribe mechanism works like this: a publisher (i.e. any source of data) pushes messages out to interested
subscribers (i.e. receivers of data) via channels . All subscribers to a specific publisher channel are immediately
notified when new messages have been published on that channel, and the message data (or payload) is received
together with the notification.

In the Webjive suite, TangoGQL works as publisher and Webjive User Interface works as subscriber.

When subscription to an attribute is made, the Webjive suite establishes the type of polling mechanism that attribute
uses. With this knowledge the Webjive suite determines and selects the most appropriate way to interact with Tango.
If Tango events are set up for that attribute, they will be used. However if they aren’t the Webjive suite reverts back to
using the original mechanism of TangoGQL polling the attribute then publishing updates to the Webjive user interface
when it changes.

1.9. Webjive Suite Publish-Subscribe Mechanism 21



project-name Documentation, Release 0.1.0

.

1.9.2 Enable/disable publish-subscribe feature from TangoGQL

TangoGQL has a function called features toggle capable of controlling some features such as publish-subscribe. There
is a file inside tangogql/ called tangogql.ini, the file looks like this:

# this configuration file is used to hold details of which features
# currently enabled in TangoGQL ( True = enabled False = disabled)

[feature_flags]
# Publish Subscribe is currently disabled for SKA
publish_subscribe = False

Changing the publish_subscribe = True will enabled pub/sub on TangoGQL, in this case, TangoGQL will try to
Subscribe to changeEvents on the device, if it fails it tries PeriodicEvents, and if that fails it falls back to polling

1.9.3 Setting up publish-subscribe on Webjive suite

Getting Started

This page shows how to set up the Webjive suite publish-subscribe (pub/sub) mechanism using the ‘tangotest’ and
‘webjivetestdevice’ tango device servers. When setting up pub/sub for your own tango devices, you should substitute
the aforementioned tango devices with your own.

To follow this guide you will need to have an instance of Webjive suite and Tango Jive running locally. The easiest
way of doing this is to use the images available through the Gitlab repository ska-engineering-ui-compose-utils.

Using a terminal, go to the ska-engneering-ui-compose-utils. Using the following make commands create tango DB
and register all devices, start the mvp, tango test and webjive test device images. Webjive suite will be launched as
part of this.

• make ds-config

• make mvp

• make start tangotest

22 Chapter 1. Official documentation



project-name Documentation, Release 0.1.0

• make start webjivetestdevice

Go to a web-browser of choice and open the Webjive suite:

http://localhost:22484/testdb/devices

.

Figure 1. Screenshot to show Webjive suite ‘Devices’ screen when user goes to ‘localhost:22484/testdb’ in web
browser.

Tango Jive Set up

To run up an instance of Jive in order to set up device polling and events.

• make start jive

After a short pause Jive should launch and present all available Tango devices. Locate the TangoTest tango device.
Navigate through TangoTest–>test–>TangoTest–>sys/tg_test/1. At this level you should be able to see ‘Polling’ and
‘Event’, which when clicked on will allow the user to modify device attribute settings.

.

Figure 2. Screenshot to show location of sys/tg_test/1 using Tango Jive .

Modifying Polling characteristics

In Polling, change polling attribute of double_scalar from default (3000) to 100 (ms). Also ensure that Polled is
selected and ticked as shown below.

.

Figure 3. Screenshot to show the Attribute tab of sys/tg_test/1 Polling characteristics.

1.9. Webjive Suite Publish-Subscribe Mechanism 23

http://localhost:22484/testdb/devices


project-name Documentation, Release 0.1.0

Modifying Event characteristics

In Event, select “Periodic event”, then for attribute “double_scalar” from default (3000) to 100 (ms)

.

Figure 4. Screenshot to show the Attribute tab of sys/tg_test/1 Event characteristics.

Verifying in Webjive Suite

Note. If Webjive suite is already running, in order to apply these new polling and event settings, it is advised to stop
and then restart Webjive suite.

.

Figure 5. Screenshot to show the available Tango devcies in Webjive suite.

Now you should go in to the devices list and ensure that “sys/tg_test/1” is in a running state. This can be confirmed
by looking at the top of the right hand side pane of the browser, a green box with “RUNNING” written in it should be
visible. If it is not present, the tango test image was not successfully launched, and so this step should be run using the
‘make start tangotest’ command from the terminal.

.

Figure 6. Screenshot to show the Scalar Attributes of the sys/tg_test/1 Tango device.

Once the tango test device is confirmed as RUNNING, go to the ‘Dashboard’ of the Webjive suite. From the right
hand side widget menu, select the “Attribute Display” widget and drag and drop an instance over onto the left hand
side canvas. Configure the widget as:

• Device: sys/tg_test/1

• Attribute: double_scalar

24 Chapter 1. Official documentation



project-name Documentation, Release 0.1.0

.

Figure 7. Screenshot to show the Attribute display widget being set up on the Webjive suite dashboard.

Once set up, click on the “Start” button to run the dashboard. After a short pause you should see the displayed attribute
value update.

.

Figure 8. Screenshot to show Webjive session running and showing the double_scalar value on the attribute
display widget.

1.9.4 Comparison

In order to demonstrate how the pub/sub can be used to allow different device attributes to be presented at different
periodicity, the same process should be repeated for the device webjivetestdevice. The Tango device webjivetestdevice
was created to allow the pub/sub mechanism to be demonstrated. It facilitates this by allowing a greater ability to
configure polling and event periodicity that what can be achieved with the tg_test device. The tg_test device is limited
to only changing its value every second - so even if polling is set to more frequently you won’t see any difference,
hence webjivetestdevice was written which does not have this restriction.

• Tango Device: test/webjivetestdevice/1

• Attribute: RandomAttr

.

Figure 9. Screenshot to show Tango Jive and the location of the WebjiveTestDevice in the sever listing.

Using Jive go to the Polling icon of “WebjiveTestDevice–>test–>WebjiveTestDevice–>test/webjivetestdevice/1”. For
attribute RandomAttr, set the polling period to 500(ms) on the Attribute tab. Ensure that the polled option is ticked.

1.9. Webjive Suite Publish-Subscribe Mechanism 25



project-name Documentation, Release 0.1.0

.

Figure 10. Screenshot to show Tango Jive and Attribute tab in which the Polling characteristics of the selected
attribute needs to be activated and an interval be stated.

For the same Tango Device, select the Event icon. For the RandomAttr attribute set the period to 1000 (ms) on the
Periodic event tab. Furthermore, RandomAttr has the Change Event set in order to send events if the current value
differs by 1% from the previous value

.

Figure 11. Screenshot to show Tango Jive and Attribute tab in which the Event characteristics of the selected
attribute needs to be activated and an interval be stated.

Once the tango devices have been set up in Jive, go back to the Webjive suite and drag a new Attribute Display widget
onto the canvas. Set up the Attribute display widget to present the RandomAttr device attribute values in Webjive.

.

Figure 12. Screenshot to show Webjive dashboard showing the double_scalar value of tg_test and webjiveTest-
Device RandomAttr on seperate attribute display widgets.

Now run the Webjive suite dashboard by clicking on the Start button. If set up correctly you should see the two
individual device attributes update at different intervals (as defined by the polling and event intervals set via Jive).

1.10 TangoGQL Logging in SKA

TangoGQL logging system uses a file called logging.yaml by default to configure the logging capabilites.

Please refer to the TangoGQL Official Documentation for the logging details: https://web-maxiv-tangogql.
readthedocs.io/en/latest/logging.html

To change the format of the logging, for example to the SKA standard one can simply change this line:

26 Chapter 1. Official documentation

https://web-maxiv-tangogql.readthedocs.io/en/latest/logging.html
https://web-maxiv-tangogql.readthedocs.io/en/latest/logging.html


project-name Documentation, Release 0.1.0

format: "1|%(asctime)s.%(msecs)03dZ|%(levelname)s|%(threadName)s|%(funcName)s|
→˓%(filename)s#%(lineno)d|%(message)s"

Optional: There is a way to pass a new file to tangoGQL using the LOG_CFG var, and example can be found on the
tangogql.yml file

version: "2.2"

volumes:
tangogql-logs: {}

services:
tangogql:

image: web-maxiv-tangogql_tangoql:latest
container_name: ${CONTAINER_NAME_PREFIX}tangogql
network_mode: ${NETWORK_MODE}
command: /bin/bash -c "source activate graphql && adev runserver tangogql/

→˓aioserver.py --app-factory=dev_run --port=5004"
depends_on:
- databaseds
- redis
volumes:
- tangogql-logs:/var/log/tangogql
- ./ska-logging.yaml:/tangogql/ska-logging.yaml
environment:
- LOG_CFG=ska-logging.yaml
- TANGO_HOST=${TANGO_HOST}
- LOG_PATH=/var/log/tangogql
# If this is not set, the output of python is delayed and only shows when the

→˓docker container restarts
- PYTHONUNBUFFERED=1
labels:
- "traefik.frontend.rule=Host:localhost; PathPrefix: /testdb/db, /testdb/socket,

→˓/testdb/graphiql; ReplacePathRegex: ^/testdb/((?:db|socket|graphiql.*?)/?)/?$$ /$$1"
- "traefik.port=5004"

redis:
image: redis
container_name: redis
network_mode: ${NETWORK_MODE}

By default two files are created, one called info.log and error.log if using ska-logging file this files will go to
/var/log/tangogql

1.10. TangoGQL Logging in SKA 27



project-name Documentation, Release 0.1.0

28 Chapter 1. Official documentation



CHAPTER 2

Prerequsities

To use this project, Docker >= v18 and GNU Make must be installed.

29



project-name Documentation, Release 0.1.0

30 Chapter 2. Prerequsities



CHAPTER 3

Development of the OSO-UI applications

The development of the OSO-UI webjive application suite is a collaboration between software developers at the Max
IV Laboratory in Lund and the SKA Buttons team.

Any development work on the webjive suite follows an agreed Joint Process for Contribution between Max IV and
SKA

31


	Official documentation
	Overview
	Steps to get Webjive running locally
	Quick Start
	Webjive users
	Docker services
	Usage
	Joint Process for Contribution between Max IV and SKA
	Basic steps to link Webjive to a real tango device
	Webjive Suite Publish-Subscribe Mechanism
	TangoGQL Logging in SKA

	Prerequsities
	Development of the OSO-UI applications

