
developer.skatelescope.org
Documentation

Release 0.1.0-beta

Marco Bartolini

Sep 21, 2023

Home

1 Disclaimer 3

2 Templates 5
2.1 Template Inheritance . 5
2.2 Pipeline Rules . 7

3 How to Use 9
3.1 Customisation . 10

4 Design 13
4.1 General Layout . 14

i

ii

developer.skatelescope.org Documentation, Release 0.1.0-beta

This repository holds the common job templates used by the pipelines in the SKA Projects.

It is developed to provide common functionality across SKAO CI/CD by calling the make targets residing in ska-cicd-
makefile repository.

For any help requests, suggestions, improvements or any issues you may have with the content of this repository please
drop us a message on #team-system-support channel at SKAO slack.

Home 1

https://gitlab.com/ska-telescope/sdi/ska-cicd-makefile/-/blob/master/README
https://gitlab.com/ska-telescope/sdi/ska-cicd-makefile/-/blob/master/README
https://skao.slack.com/archives/CEMF9HXUZ

developer.skatelescope.org Documentation, Release 0.1.0-beta

2 Home

CHAPTER 1

Disclaimer

The latest releases of ansible (v7.1.0 and v7.0.0) introduced a bug into ansible-core (v2.14.1) that breaks ansible-lint.
In order to fix this the ansible version being installed is going to be pinned to version 6.7.0 and should go back to the
latest version once the bug has been patched. Ansible-lint version has also been temporarily pinned to version 6.11.0

3

developer.skatelescope.org Documentation, Release 0.1.0-beta

4 Chapter 1. Disclaimer

CHAPTER 2

Templates

Currently the following artefact types are supported:

• ansible: ansible collections

• helm: Helm Charts

• oci-images: OCI Images

• python: Python Code and Artefacts

• raw: Raw Artefacts

• conan: Conan Artefacts

• rpm: RPM Artefacts

• gpu: Python Code and Artefacts with GPU support for the testing stage

• terraform: Terraform Code

In addition, several use-cases for a typical repository are also supported:

• docs: Sphinx documentation support for ReadTheDocs

• k8s: Kubernetes in-cluster testing

• release: GitLab tag based release and changelog automation

• finaliser: GitLab CI Badges and Pipeline workflow rules

• tmdata: Upload telescope model data

• xray: upload BDD test results to XRAY

2.1 Template Inheritance

There is a hierarchy to the templates which express a certain amount of inheritance, through nested includes:

5

developer.skatelescope.org Documentation, Release 0.1.0-beta

graph LR

NodeRoot[Template Hierarchy] --> NodeFinaliser[finaliser.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeRelease[release.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeDocs[docs.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeRaw[raw.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeRPM[rpm.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeConan[conan.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeAnsible[ansible.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeHelm[helm-chart.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeK8s[k8s.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeK8sTestRunner[k8s-test-runner.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeDeploy[deploy.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeOCI[oci-image.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodePython[python.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeTerraform[terraform.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeTMData[tmdata.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeXray[xray-publish.gitlab-ci.yml]
NodeRoot[Template Hierarchy] --> NodeConfigCapture[config-capture.gitlab-ci.yml]

subgraph "Finaliser/Badge Templates"
NodeFinaliser --> NodeFinaliserRules[rules.gitlab-ci.yml]
end

subgraph "Release Management Templates"
NodeRelease --> NodeReleaseChangeLogBuild[changelog-build.gitlab-ci.yml]
end

subgraph "Docs Templates"
NodeDocs --> NodeDocsBuild[docs-build.gitlab-ci.yml]
NodeDocs --> NodeDocsPages[docs-pages.gitlab-ci.yml]
end

subgraph "Raw Package Templates"
NodeRaw --> NodeRawBuild[raw-build.gitlab-ci.yml]
NodeRaw --> NodeRawPublish[raw-publish.gitlab-ci.yml]
end

subgraph "RPM Package Templates"
NodeRPM --> NodeRPMBuild[rpm-build.gitlab-ci.yml]
NodeRPM --> NodeRPMPublish[rpm-publish.gitlab-ci.yml]
end

subgraph "Conan Package Templates"
NodeConan --> NodeConanBuild[conan-build.gitlab-ci.yml]
NodeConan --> NodeConanPublish[conan-publish.gitlab-ci.yml]
end

subgraph "Ansible Templates"
NodeAnsible --> NodeAnsibleLint[ansible-lint.gitlab-ci.yml]
NodeAnsible --> NodeAnsiblePublish[ansible-publish.gitlab-ci.yml]
end

subgraph "Helm Templates"
NodeHelm --> NodeHelmLint[helm-chart-lint.gitlab-ci.yml]
NodeHelm --> NodeHelmBuild[helm-chart-build.gitlab-ci.yml]
NodeHelm --> NodeHelmPublish[helm-chart-publish.gitlab-ci.yml]

(continues on next page)

6 Chapter 2. Templates

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

end

subgraph "Kubernetes Templates"
NodeK8s --> NodeK8sBuild[k8s-test.gitlab-ci.yml]
NodeK8sTestRunner
end

subgraph "Xray Templates"
NodeXray
end

subgraph "Config Capture Templates"
NodeConfigCapture
end

subgraph "Deployment Templates"
NodeDeploy --> NodeDeployDev[deploy.dev.gitlab-ci.yml]
NodeDeploy --> NodeDeploySharedDev[deploy.shared.dev.gitlab-ci.yml]
NodeDeploy --> NodeDeployIntegration[deploy.integration.gitlab-ci.yml]
NodeDeploy --> NodeDeployStaging[deploy.staging.gitlab-ci.yml]
end

subgraph "OCI Image Templates"
NodeOCI --> NodeOCILint[oci-image-lint.gitlab-ci.yml]
NodeOCI --> NodeOCIBuild[oci-image-build.gitlab-ci.yml]
NodeOCI --> NodeOCIPublish[oci-image-publish.gitlab-ci.yml]
NodeOCI --> NodeOCIScan[oci-image-scan.gitlab-ci.yml]
end

subgraph "Python Templates"
NodePython --> NodePythonLint[python-lint.gitlab-ci.yml]
NodePython --> NodePythonBuild[python-build.gitlab-ci.yml]
NodePython --> NodePythonTest[python-test.gitlab-ci.yml]
NodePython --> NodePythonPublish[python-publish.gitlab-ci.yml]
end

subgraph "Terraform Templates"
NodeTerraform --> NodeTerraformLint[terraform-lint.gitlab-ci.yml]
end

subgraph "Telescope Model Data Templates"
NodeTMData --> NodeTMDataBuild[tmdata-package.gitlab-ci.yml]
NodeTMData --> NodeTMDataPublish[tmdata-publish.gitlab-ci.yml]
end

To learn more about how to use the templates, follow How to Use section.

To learn more about how the templates are designed and integrated, follow Design section.

2.2 Pipeline Rules

The finaliser.gitlab-ci.yml file includes top-level workflow rules(rules.gitlab-ci.yml) that en-
ables the Merge Request Pipelines and prevents duplication with the Branch Pipelines. Please see below where the
different types of pipelines are described. It also enables the use of Merged Result pipelines.

Branch Pipelines: pipelines that target a source branch, i.e. the pipeline is run against what you pushed to the remote

2.2. Pipeline Rules 7

developer.skatelescope.org Documentation, Release 0.1.0-beta

every time.

Merge Request Pipelines: pipelines that are attached to a merge request. They are different because they only run
against commits associated with a merge requests

rules.gitlab-ci.yml file(workflow:rules) defines whether the pipeline should be created or not at all.
This is to manage branch and merge request pipelines while preventing duplicate pipelines. For example, without any
rules if there is an open MR, there would be two identical pipelines running, one for the MR pipeline and the other
for the branch pipeline. The added workflow:rules prevents this by enabling/disabling one of the pipeline types.
The current workflow is if there are no open merge requests, a branch pipeline is created. If there is an open merge
request, then the branch pipelines are disabled and merge request pipelines are enabled. So, there would only be single
pipeline in the end.

The above is needed for the merged result pipelines. It enables the pipeline to really see the results of the master
branch pipeline as if the changes are merged instead of just seeing the results for the source branch.

To illustrate, It can easily happen that a new commit in a branch works (i.e. the pipeline status is green, and as a result
the Merge Request seems safe to merge), while in fact the merge breaks the pipeline in the master branch. By using
Merge Result pipelines we can potentially avoid this, by running pipelines on what the master branch would like if our
changes were merged. This setting is enabled for all projects in SKAO group. To learn more, please have a look at the
GitLab blog post about it.

There are some conditions:

• The MR has to be ready, i.e. no Draft or WIP tags in the MR title

• There shouldn’t be any merge conflicts If the MR is not mergeable (above conditions), then what we have is
the old pipelines that are targeting the source branch as usual. However, these are now labelled as detached by
GitLab (I think poor choice of words) to differentiate them from merged result pipelines. Fear not! They are
still targeting your branch so you are not actually in a detached state from your branch.

8 Chapter 2. Templates

https://about.gitlab.com/blog/2019/09/11/how-to-avoid-broken-master-with-pipelines-for-merge-requests/

CHAPTER 3

How to Use

First, add the ska-cicd-makefile repository as a submodule to your project.

git submodule add https://gitlab.com/ska-telescope/sdi/ska-cicd-makefile.git .make

Make sure that you add and commit the .gitmodules file and .make directory:

git add .gitmodules .make
git commit -s

Now include the *.mk files in your Makefile:

include .make/*.mk

Or, you can include specific ones like below. Note that you have to include the ones you are going to use in your
pipeline.

include makefile targets for Kubernetes management
-include .make/k8s.mk

The following should be standard includes
include core makefile targets for release management
-include .make/base.mk

include your own private variables for custom deployment configuration
-include PrivateRules.mak

To ensure that your GitLab CI pipeline automatically clones submodules, add the following to .gitlab-ci.yml:

variables:
GIT_SUBMODULE_STRATEGY: recursive

In most scenarios, include the appropriate main template files in your repositories gitlab-ci.yml file. To include
python, oci, kubernetes and documentation support:

9

https://gitlab.com/ska-telescope/sdi/ska-cicd-makefile

developer.skatelescope.org Documentation, Release 0.1.0-beta

include:
Python

- project: 'ska-telescope/templates-repository'
file: 'gitlab-ci/includes/python.gitlab-ci.yml'
Terraform

- project: 'ska-telescope/templates-repository'
file: 'gitlab-ci/includes/terraform.gitlab-ci.yml'
Docs pages

- project: 'ska-telescope/templates-repository'
file: 'gitlab-ci/includes/docs-pages.gitlab-ci.yml'
k8s steps

- project: 'ska-telescope/templates-repository'
file: 'gitlab-ci/includes/k8s.gitlab-ci.yml'
configuration capture

- project: 'ska-telescope/templates-repository'
file: 'gitlab-ci/includes/config-capture.gitlab-ci.yml'
OCI Images

- project: 'ska-telescope/templates-repository'
file: 'gitlab-ci/includes/oci-image.gitlab-ci.yml'
Raw

- project: 'ska-telescope/templates-repository'
file: 'gitlab-ci/includes/raw.gitlab-ci.yml'
RPM

- project: 'ska-telescope/templates-repository'
file: 'gitlab-ci/includes/rpm.gitlab-ci.yml'
Conan

- project: 'ska-telescope/templates-repository'
file: 'gitlab-ci/includes/conan.gitlab-ci.yml'
Tag Based GitLab Release Management

- project: 'ska-telescope/templates-repository'
file: 'gitlab-ci/includes/release.gitlab-ci.yml'
.post step finalisers eg: badges

- project: 'ska-telescope/templates-repository'
file: 'gitlab-ci/includes/finaliser.gitlab-ci.yml'

Note, finaliser.gitlab-ci.yml is required by every repository as it includes functionality for ci-badges and
workflow rules which is explained in Templates section.

If you don’t require every job for an artefact in your project, you could also just include the necessary part:

include:
We don't need python build and publish
as we are not releasing a python artefact
- project: 'skatelescope/templates-repository'
file: 'gitlab-ci/includes/python-lint.gitlab-ci.yml'

- project: 'skatelescope/templates-repository'
file: 'gitlab-ci/includes/python-test.gitlab-ci.yml'

If you want to get detailed help on what each job is going to do, run make long-help to get additional documen-
tation on the actual make targets.

3.1 Customisation

All of the jobs should be configured by their respective make-targets and variables and hooks provided. Follow ska-
cicd-makefile to learn more.

10 Chapter 3. How to Use

https://gitlab.com/ska-telescope/sdi/ska-cicd-makefile/-/blob/master/README
https://gitlab.com/ska-telescope/sdi/ska-cicd-makefile/-/blob/master/README

developer.skatelescope.org Documentation, Release 0.1.0-beta

Example; If you want to include additional pytest flags, you can define PYTHON_VARS_AFTER_PYTEST variable
in your main Makefile as below:

PYTHON_VARS_AFTER_PYTEST = -m 'not post_deployment' --forked \
--disable-pytest-warnings

Note that although you can achieve the same effect for the pipelines by providing variables in your gitlab-ci.yml
file as below, it is not recommended! as it makes the local development and pipeline behaviour diverge from each
other.

NOT RECOMMENDED!
variables:
- PYTHON_VARS_AFTER_PYTEST: "-m 'not post_deployment' --forked \

--disable-pytest-warnings"

3.1. Customisation 11

developer.skatelescope.org Documentation, Release 0.1.0-beta

12 Chapter 3. How to Use

CHAPTER 4

Design

For every artefact type in SKAO, there should be a template that addresses some of the common steps in DevSecOps
Lifecycle:

• Lint

• Build

• Test

• Package

• Release

• Deploy

Each artefact type has its own template file in <artefact-type>.gitlab-ci.yml which includes avaiable
steps. Each step have its own <artefact-type>-<step>.gitlab-ci.yml file to describe when and how it
should run.

For python;

python.gitlab-ci.yml
python-lint.gitlab-ci.yml
python-build.gitlab-ci.yml
python-test.gitlab-ci.yml
python-publish.gitlab-ci.yml

You can check the contents of the python.gitlab-ci.yml file and investigate the actual step template files under
gitlab-ci/includes directory.

For each job, script part should just compose of calling the make targets associated with the artefact and step.
before-script part provides checking if the target exists and provides documentation.

Providing that the underlying implementation is the same as makefile targets allows repositories and developers
to be flexible in their own implementation and aligns both the development and pipeline environment. You can
read more on how to customise the make targets in makefile repository documentation

13

https://gitlab.com/ska-telescope/sdi/ska-cicd-makefile/-/blob/master/README

developer.skatelescope.org Documentation, Release 0.1.0-beta

rules part describes when the job should be included in the pipeline to eliminate unnecessary/invalid jobs in the
pipeline. To push artefacts to GitLab or CAR from the publish stage jobs, the git tags are used as identifier.

4.1 General Layout

For any artefact type:

• the main <artefact>.gitlab-ci.yml file has only the consisting include jobs.

• Each lifecycle step in a pipeline is named with the correct prefix and should reside in its own
<artefact-type>-<step>.gitlab-ci.yml file.

• Each step template file includes the necessary jobs starting with the step name
<artefact-type>-<step>.... Multiple jobs are provided to handle different use-cases. i.e. to
handle python modern/legacy build system, to manage development and production publishing of artefacts etc.

• Each job performs any preliminary actions in before_script such as logins, config settings for the environ-
ment.

• Each job just calls the respective make targets and passes any variables that needs to be used in script
part. The script itself should not have any logic to not deviate from the local development workflow.

If we follow the python example as described above. The main python.gitlab-ci.yml file only includes other
jobs:

unbrella include for all Python life cycle stages
include:
Linting stage
- local: gitlab-ci/includes/python-lint.gitlab-ci.yml
Build stage
- local: gitlab-ci/includes/python-build.gitlab-ci.yml
Test stage
- local: gitlab-ci/includes/python-test.gitlab-ci.yml
Publish stage
- local: gitlab-ci/includes/python-publish.gitlab-ci.yml

and the python-publish.gitlab-ci.yml describes the actual python build stage jobs. As you can see the
necessary variables are passed to the make python-publish target and rules is used to separate tag pipelines
from development pipelines to publish to central artefact repository or gitlab registry, respectively.

Python publish stage template
python-publish-to-car:
stage: publish
tags:
- k8srunner

image: $SKA_K8S_TOOLS_BUILD_DEPLOY
before_script:
- '[-f .make/python.mk] || (echo "File python.mk not included in Makefile; exit

→˓1")'
- 'make help | grep python-publish'

script:
- make PYTHON_PUBLISH_USERNAME=${CAR_PYPI_USERNAME} PYTHON_PUBLISH_PASSWORD=${CAR_

→˓PYPI_PASSWORD} PYTHON_PUBLISH_URL=${CAR_PYPI_REPOSITORY_URL} python-publish
rules:
- if: '$CI_COMMIT_TAG'

exists:
- pyproject.toml

(continues on next page)

14 Chapter 4. Design

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

- setup.py

python-publish-to-gitlab:
stage: publish
tags:
- k8srunner

image: $SKA_K8S_TOOLS_BUILD_DEPLOY
allow_failure: true
before_script:
- '[-f .make/python.mk] || (echo "File python.mk not included in Makefile; exit

→˓1")'
- 'make help | grep python-publish'

script:
- make PYTHON_PUBLISH_USERNAME=gitlab-ci-token PYTHON_PUBLISH_PASSWORD=${CI_JOB_

→˓TOKEN} PYTHON_PUBLISH_URL=https://gitlab.com/api/v4/projects/${CI_PROJECT_ID}/
→˓packages/pypi python-publish
rules:
- exists:

- pyproject.toml
- setup.py

4.1. General Layout 15

	Disclaimer
	Templates
	Template Inheritance
	Pipeline Rules

	How to Use
	Customisation

	Design
	General Layout

